

Ben Grynhaus, Jordan Hudgens, Rayon Hunte, Matt Morgan,

and Wekoslav Stefanovski

A practical guide to confident, effective

TypeScript programming

The TypeScript
Workshop

The TypeScript Workshop
Copyright © 2021 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Ben Grynhaus, Jordan Hudgens, Rayon Hunte, Matt Morgan,
and Wekoslav Stefanovski

Reviewers: Yusuf Salman and Cihan Yakar

Managing Editor: Mahesh Dhyani

Acquisitions Editors: Royluis Rodrigues and Sneha Shinde

Production Editor: Shantanu Zagade

Editorial Board: Megan Carlisle, Mahesh Dhyani, Heather Gopsill, Manasa Kumar,
Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Abhishek Rane, Brendan Rodrigues,
Ankita Thakur, Nitesh Thakur, and Jonathan Wray

First published: July 2021

Production reference: 1280721

ISBN: 978-1-83882-849-3

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: TypeScript Fundamentals 1

Introduction .. 2

The Evolution of TypeScript .. 2

Design Goals of TypeScript ... 5

Getting Started with TypeScript ... 6

The TypeScript Compiler ... 7

Setting Up a TypeScript Project .. 8

Exercise 1.01: Using tsconfig.json and Getting Started
with TypeScript ... 9

Types and Their Uses ... 11

TypeScript and Functions .. 13

Exercise 1.02: Working with Functions in TypeScript 19

TypeScript and Objects .. 22

Exercise 1.03: Working with Objects .. 26

Basic Types .. 28

Exercise 1.04: Examining typeof ... 30

Strings .. 31

Numbers ... 32

Booleans ... 33

Arrays .. 33

Tuples .. 36

Schwartzian transform ...37

Exercise 1.05: Using Arrays and Tuples to Create
an Efficient Sort of Objects ... 39

Enums .. 43

Any and Unknown ... 45

Null and Undefined ... 47

Never ... 48

Function Types ... 49

Making Your Own Types .. 50

Exercise 1.06: Making a Calculator Function .. 51

Activity 1.01: Creating a Library for Working with Strings 55

Summary .. 58

Chapter 2: Declaration Files 61

Introduction ... 62

Declaration Files ... 62

Exercise 2.01: Creating a Declaration File from Scratch 64

Exceptions ... 71

Third-Party Code Libraries ... 73

DefinitelyTyped .. 73

Analyzing an External Declaration File .. 74

Exercise 2.02: Creating Types with External Libraries 76

Development Workflow with DefinitelyTyped 80

Exercise 2.03: Creating a Baseball Lineup Card Application 81

Activity 2.01: Building a Heat Map Declaration File 83

Summary .. 84

Chapter 3: Functions 87

Introduction ... 88

Functions in TypeScript .. 88

Exercise 3.01: Getting Started with Functions in TypeScript 89

The function Keyword ... 92

Function Parameters ... 92

Argument versus Parameter .. 93

Optional Parameters ... 94

Default Parameters ... 95

Multiple Arguments ... 96

Rest Parameters ... 96

Destructuring Return Types ... 97

The Function Constructor ... 98

Exercise 3.02: Comparing Number Arrays .. 99

Function Expressions ... 102

Arrow Functions .. 104

Type Inference ... 105

Exercise 3.03: Writing Arrow Functions ... 106

Understanding this .. 109

Exercise 3.04: Using this in an Object .. 112

Closures and Scope .. 114

Exercise 3.05: Creating the Order Factory with Closures 122

Currying ... 125

Exercise 3.06: Refactoring into Curried Functions 127

Functional Programming ... 130

Organizing Functions into Objects and Classes 133

Exercise 3.07: Refactoring JavaScript into TypeScript 134

Import, Export, and Require .. 138

Exercise 3.08: import and export ... 141

Activity 3.01: Building a Flight Booking System with Functions 143

Unit Testing with ts-jest ... 146

Activity 3.02: Writing Unit Tests ... 150

Error Handling ... 152

Summary .. 153

Chapter 4: Classes and Objects 155

Introduction ... 156

What Are Classes and Objects? ... 156

Exercise 4.01: Building Your First Class ... 158

Extending Class Behavior with a Constructor 160

The this Keyword ... 161

Exercise 4.02: Defining and Accessing the Attributes of a Class 162

Exercise 4.03: Integrating Types into Classes 165

TypeScript Interfaces .. 167

Exercise 4.04: Building an Interface ... 168

Generating HTML Code in Methods ... 171

Exercise 4.05: Generating and Viewing HTML Code 171

Working with Multiple Classes and Objects ... 173

Exercise 4.06: Combining Classes .. 174

Activity 4.01: Creating a User Model Using Classes,
Objects, and Interfaces ... 178

Summary .. 180

Chapter 5: Interfaces and Inheritance 183

Introduction ... 184

Interfaces ... 184

Case Study – Writing Your First Interface ... 187

Exercise 5.01: Implementing Interfaces ... 192

Exercise 5.02: Implementing Interfaces – Creating a
Prototype Blogging Application ... 195

Exercise 5.03: Creating Interfaces for a Function
for Updating a User Database ... 198

Activity 5.01: Building a User Management Component
Using Interfaces ... 200

TypeScript Inheritance ... 201

Exercise 5.04: Creating a Base Class and Two Extended
Child Classes ... 210

Exercise 5.05: Creating Bases and Extended Classes
Using Multi-level Inheritance .. 216

Activity 5.02: Creating a Prototype Web Application
for a Vehicle Showroom Using Inheritance .. 219

Summary .. 221

Chapter 6: Advanced Types 223

Introduction ... 224

Type Aliases ... 224

Exercise 6.01: Implementing a Type Alias ... 229

Type Literals .. 231

Exercise 6.02: Type Literals ... 233

Intersection Types .. 234

Exercise 6.03: Creating Intersection Types ... 238

Union Types ... 241

Exercise 6.04: Updating the Products Inventory using an API 243

Index Types .. 247

Exercise 6.05: Displaying Error Messages ... 249

Activity 6.01: Intersection Type .. 251

Activity 6.02: Union Type ... 252

Activity 6.03: Index Type ... 253

Summary .. 255

Chapter 7: Decorators 257

Introduction ... 258

Reflection ... 259

Setting Up Compiler Options .. 259

Importance of Decorators ... 260

The Problem of Cross-Cutting Concerns ... 262

The Solution...264

Decorators and Decorator Factories .. 265

Decorator Syntax ... 267

Decorator Factories ... 267

Class Decorators ... 269

Property Injection .. 269

Exercise 7.01: Creating a Simple Class Decorator Factory 271

Constructor Extension ... 273

Exercise 7.02: Using a Constructor Extension Decorator 274

Constructor Wrapping ... 275

Exercise 7.03: Creating a Logging Decorator for a Class 277

Method and Accessor Decorators .. 280

Decorators on Instance Functions ... 281

Exercise 7.04: Creating a Decorator That Marks
a Function Enumerable ... 283

Decorators on Static Functions .. 286

Method Wrapping Decorators .. 287

Exercise 7.05: Creating a Logging Decorator for a Method 287

Activity 7.01: Creating Decorators for Call Counting 290

Using Metadata in Decorators .. 293

Reflect Object ... 294

Exercise 7.06: Adding Metadata to Methods via Decorators 296

Property Decorators ... 298

Exercise 7.07: Creating and Using a Property Decorator 300

Parameter Decorators ... 302

Exercise 7.08: Creating and Using a Parameter Decorator 304

Application of Multiple Decorators on a Single Target 306

Activity 7.02: Using Decorators to Apply Cross-Cutting Concerns 308

Summary .. 310

Chapter 8: Dependency Injection in TypeScript 313

Introduction ... 314

The DI Design Pattern .. 315

DI in Angular ... 321

Exercise 8.01: Adding HttpInterceptor to an Angular App 326

DI in Nest.js ... 330

InversifyJS .. 331

Exercise 8.02: "Hello World" Using InversifyJS 334

Activity 8.01: DI-Based Calculator .. 337

Summary .. 340

Chapter 9: Generics and Conditional Types 343

Introduction ... 344

Generics ... 345

Generic Interfaces .. 348

Generic Types ... 351

Generic Classes .. 351

Exercise 9.01: Generic Set class ... 352

Generic Functions .. 355

Generic Constraints ... 359

Exercise 9.02: The Generic memoize Function 360

Generic Defaults .. 364

Conditional Types ... 366

Activity 9.01: Creating a DeepPartial<T> Type 368

Summary .. 369

Chapter 10: Event Loop and Asynchronous Behavior 371

Introduction ... 372

The Multi-Threaded Approach .. 373

The Asynchronous Execution Approach ... 374

Executing JavaScript ... 376

Exercise 10.01: Stacking Functions .. 379

Browsers and JavaScript .. 381

Events in the Browser ... 382

Environment APIs ... 383

setTimeout .. 384

Exercise 10.02: Exploring setTimeout .. 384

AJAX (Asynchronous JavaScript and XML) ... 387

Activity 10.01: Movie Browser Using XHR and Callbacks 390

Promises .. 394

Exercise 10.03: Counting to Five ... 394

What are Promises? ... 396

Exercise 10.04: Counting to Five with Promises 399

Activity 10.02: Movie Browser Using fetch and Promises 402

async/await ... 405

Exercise 10.05: Counting to Five with async and await 407

Activity 10.03: Movie Browser Using fetch and async/await 409

Summary .. 412

Chapter 11: Higher-Order Functions and Callbacks 415

Introduction ... 416

Introduction to HOCs – Examples .. 416

Higher-Order Functions ... 418

Exercise 11.01: Orchestrating Data Filtering and
Manipulation Using Higher-Order Functions 423

Callbacks .. 426

The Event Loop .. 427

Callbacks in Node.js ... 431

Callback Hell ... 432

Avoiding Callback Hell ... 434

Splitting the Callback Handlers into Function Declarations
at the File Level .. 434

Chaining Callbacks ... 436

Promises ... 439

async/await ... 440

Activity 11.01: Higher-Order Pipe Function .. 442

Summary .. 443

Chapter 12: Guide to Promises in TypeScript 445

Introduction ... 446

The Evolution of and Motivation for Promises 446

Anatomy of a Promise .. 450

The Promise Callback .. 450

then and catch ... 451

Pending State ... 451

Fulfilled State .. 452

Rejected State ... 452

Chaining .. 453

Exercise 12.01: Chaining Promises ... 454

finally ... 457

Promise.all .. 458

Exercise 12.02: Recursive Promise.all .. 459

Promise.allSettled .. 463

Exercise 12.03: Promise.allSettled ... 466

Promise.any .. 468

Promise.race ... 469

Enhancing Promises with Types .. 470

Exercise 12.04: Asynchronous Rendering ... 471

Libraries and Native Promises — Third-Party Libraries,
Q, and Bluebird ... 474

Polyfilling Promises ... 475

Promisify .. 478

Node.js util.promisify .. 480

Asynchronous FileSystem .. 480

fs.readFile ... 481

fs.readFileSync ... 481

The fs Promises API ... 482

Exercise 12.05: The fs Promises API ... 482

Working with Databases .. 485

Developing with REST ... 488

Exercise 12.06: Implementing a RESTful API backed by sqlite 488

Putting It All Together – Building a Promise App 504

Activity 12.01: Building a Promise App .. 504

Summary .. 506

Chapter 13: Async/Await in TypeScript 509

Introduction ... 510

Evolution and Motivation .. 511

async/await in TypeScript .. 512

Exercise 13.01: Transpilation Targets .. 513

Choosing a Target .. 517

Syntax ... 517

async .. 517

Exercise 13.02: The async Keyword ... 518

Exercise 13.03: Resolving an async Function with then 519

await .. 520

Exercise 13.04: The await Keyword .. 521

Exercise 13.05: Awaiting a Promise ... 522

Syntactic Sugar ... 523

Exception Handling ... 523

Exercise 13.06: Exception Handling ... 525

Top-Level await ... 529

Promise Methods .. 530

Exercise 13.07: async/await in Express.js .. 531

Exercise 13.08: NestJS .. 535

Exercise 13.09: TypeORM .. 538

Activity 13.01: Refactoring Chained Promises to Use await 544

Summary .. 546

Chapter 14: TypeScript and React 549

Introduction ... 550

Typing React .. 550

TypeScript in React .. 551

Hello, React .. 551

The Component ... 552

Stateful Components ... 553

Stateless Components ... 553

Pure Components .. 553

Higher-Order Components ... 553

JSX and TSX .. 554

Exercise 14.01: Bootstrapping with Create React App 555

Routing ... 560

Exercise 14.02: React Router .. 560

React Components ... 567

Class Components ... 567

Function Components (Function Declaration) 569

Function Components (Function Expression
with Arrow Functions) ... 569

No JSX .. 570

State in Function Components ... 571

State Management in React .. 573

Exercise 14.03: React Context ... 575

Firebase .. 579

Exercise 14.04: Getting Started with Firebase 579

Styling React Applications .. 580

Master Stylesheet .. 581

Component-Scoped Styles .. 581

CSS-in-JS ... 581

Component Libraries ... 581

Activity 14.01: The Blog ... 582

Summary .. 586

Appendix 589

Index 687

Preface

ii | Preface

About the Book
By learning TypeScript, developers can start writing cleaner, more readable code that
is easier to understand and less likely to contain bugs. What's not to like?

It's certainly an appealing prospect, but learning a new language can be challenging,
and it's not always easy to know where to begin. This book is the perfect place to
start. It provides the ideal platform for JavaScript programmers to get to grips with
writing eloquent, productive TypeScript code.

Unlike many theory-heavy books, The TypeScript Workshop balances clear explanations
with opportunities for hands-on practice. You'll quickly be up and running building
functional websites, without having to wade through pages and pages of history and
dull, dry fluff. Guided exercises clearly demonstrate how key concepts are used in
the real world, and each chapter is rounded off with an activity that challenges you to
apply your new knowledge in the context of a realistic scenario.

Whether you're a hobbyist eager to get cracking on your next project or a professional
developer looking to unlock your next promotion, pick up a copy and make a start!
Whatever your motivation, by the end of this book, you'll have the confidence and
understanding to make it happen with TypeScript.

About the Authors

Ben Grynhaus is a full-stack developer with a passion for the frontend. With over 7
years of experience, most of them in web development working with various tech
stacks, he specializes in TypeScript, React, and Angular. Ben has worked on several
products at Microsoft and is now part of an innovative start-up in the marketing
domain. He has published numerous open source npm modules that help in Angular
app development, especially when integrating with React.

Jordan Hudgens is a full-stack developer and the founder of DevCamp and the
Bottega Code School. As a developer over the past 15 years, he specializes in Ruby
on Rails, React, Vue.js, and TypeScript with a focus on API development. He has built
applications for a wide variety of organizations, including Eventbrite and Quip. He
has published and maintains multiple open source Node Package Manager (npm)
modules that help individuals automate the development process for JavaScript and
TypeScript applications. Additionally, he has published over 30 courses, taught 42,000
students globally, and written several programming books.

About the Book | iii

Rayon Hunte has been working with Angular and TypeScript for more than 3 years.
He has built complex web applications, such as a vehicle management system and a
land management web application for the local government. TypeScript has enabled
Rayon to leverage his knowledge of JavaScript and web frameworks to build complex,
scalable web applications. Having been a development team lead, Rayon has firsthand
knowledge of how large projects can become too complicated and impossible to
modify and scale as time passes and more features are added. He realizes that adding
strong typing to your projects is essential in modern web development and for him,
TypeScript has been a real game-changer.

Matt Morgan has been a software engineer, architect, and technology leader for more
than 20 years. He's worked with many technologies over the years, such as RDBMS,
Java, and Node.js, and seen many generations of web frameworks rise and fall. He
is an occasional OSS contributor and a frequent blogger. Matt is most interested in
finding ways to improve workflows and developer experience. A great toolchain is a
force multiplier.

Wekoslav Stefanovski has about two decades of professional developer experience
using a variety of development technologies. He has been using JavaScript since
the previous millennium and has a long and fruitful love/hate relationship with
it. On the other hand, with TypeScript it was love at first compilation, and it's only
gotten better since then. His passions include building better programs and building
better programmers.

Who This Book Is For

The TypeScript Workshop is designed for software developers who want to broaden
their skill set by learning TypeScript. To get the most out of this book, you should
have a basic knowledge of JavaScript or experience of using another similar
programming language.

About the Chapters

Chapter 1, TypeScript Fundamentals, equips you with TypeScript fundamentals. You'll
first learn how to set up your compiler options. Then, you'll perform various exercises
on TypeScript types and objects.

Chapter 2, Declaration Files, gets you started with declaration files in TypeScript.
You'll learn how to create declaration files from scratch and implement common
development patterns for creating declaration files.

iv | Preface

Chapter 3, Functions, dives deep into TypeScript functions. The chapter begins by
introducing basic functions in TypeScript and then progresses to teach you advanced
topics, such as type inference, currying, and the use of import, export, and the
require syntax.

Chapter 4, Classes and Objects, teaches you how to define classes and instantiate them
to create objects. You'll learn how to create classes that take in multiple objects as
arguments to build dynamic behavior and confidently use TypeScript to generate
HTML code.

Chapter 5, Interfaces and Inheritance, shows how you can use the power of interfaces
and inheritance in TypeScript to write better, more maintainable code with well-
structured functions, classes, and objects, and also be able to reuse your existing
code efficiently.

Chapter 6, Advanced Types, teaches you how to use type literal and type alias. The
chapter also discusses the fundamentals of how you can implement complex types
such as intersection and union types.

Chapter 7, Decorators, first establishes the motivation for decorators and then teaches
you how you can use them to add complex logic to your code without getting your
application logic cluttered up.

Chapter 8, Dependency Injection in TypeScript, introduces dependency injection (DI)
in TypeScript. The chapter begins with some fundamentals of design patterns in
TypeScript and teaches you how to use the DI design pattern in a simple application.

Chapter 9, Generics and Conditional Types, describes the fundamentals of generics and
conditional types in TypeScript. The chapter then describes how you can use generics
to make your code more type-safe and avoid errors at runtime.

Chapter 10, Event Loop and Asynchronous Behavior, first establishes the motivation for
events loops and asynchronous behavior, and then through several exercises teaches
you how you use the asynchronous approach in TypeScript.

Chapter 11, Higher-Order Functions and Callbacks, begins with the fundamentals of
higher-order functions and callbacks in TypeScript and then teaches you how you can
implement them in TypeScript through several exercises and examples.

Chapter 12, Guide to Promises in TypeScript, first establishes the motivation for using
Promises and then teaches you how you can implement them in TypeScript.

Chapter 13, Async/Await in TypeScript, covers common uses of async/await and
discusses the landscape of asynchronous programming in TypeScript.

About the Book | v

Chapter 14, TypeScript and React, covers the React library and how to build enhanced
user interfaces with TypeScript. You will bootstrap React applications using the
Create React App command-line interface.

Conventions

Code words in the text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "This code invokes myFunction with an argument of 'world' and assigns
the result of the function call to a new constant message (const message)."

A block of code is set as follows:

const message = myFunction('world');

console.log(message);

// Hello world!

Before You Begin

Please make sure you have followed the instructions given below regarding the
installation of the required compilers and code editors before you begin executing the
code provided in the book.

Hardware Requirements

For an optimal experience, we recommend the following hardware configuration:

• Processor: Intel Core i5 or equivalent

• Memory: 4 GB RAM

• Storage: 35 GB available space

Software Requirements

You'll also need the following software installed in advance:

• OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit, or Windows 10 64-bit, Ubuntu
Linux, or the latest version of macOS

• Browser: The latest version of either Google Chrome or Mozilla Firefox

vi | Preface

Installation and Setup

VS Code

This book uses VS Code as the IDE to save and run TypeScript and JavaScript files.
You can download VS Code from the following website: https://code.visualstudio.com/
download. Scroll to the bottom of the page and click on the download button relevant
to your system. Follow the instructions displayed on your screen.

Node.js

You need to install the latest version of Node.js, which includes npm. You can
download and install Node.js from https://nodejs.org/en/download/. Click and download
the installer relevant to your system.

TypeScript

This book uses TypeScript version 4.1.3. Once you have VS Code and Node.js installed
in your system, you can install TypeScript by opening a terminal and running the
following command:

npm install -g typescript@4.1.3

The preceding command will install version 4.1.3 globally. There are several other
libraries and dependencies that you might have to install as part of executing the
code given in the exercises and activities in this book. However, instructions for doing
so have been provided in the relevant chapter/section.

Installing the Code Bundle

Download the code files from GitHub at https://github.com/PacktWorkshops/
The-TypeScript-Workshop. The files here contain the code for the exercises and activities
for each chapter. This can be a useful reference as you go through the book. You can
either download the code files in the .zip format or clone the entire repository to
your desktop using GitHub Desktop.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://nodejs.org/en/download/
https://github.com/PacktWorkshops/The-TypeScript-Workshop
https://github.com/PacktWorkshops/The-TypeScript-Workshop

About the Book | vii

Get in Touch

Feedback from our readers is always welcome.

General feedback: If you have any questions about this book, please mention
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you could report this to us. Please visit www.packtpub.com/support/errata and complete
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you could provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in, and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Please Leave a Review

Let us know what you think by leaving a detailed, impartial review on Amazon. We
appreciate all feedback – it helps us continue to make great products and help
aspiring developers build their skills. Please spare a few minutes to give your thoughts
– it makes a big difference to us. You can leave a review on Amazon via the following
link: https://packt.link/r/1838828494.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1838828494

Overview

In this chapter, we'll briefly illustrate the problems that exist in JavaScript
development environments, and we'll see exactly how TypeScript helps
us write better and more maintainable code. This chapter will first help
you set up the TypeScript compiler and then teach you the fundamentals.
Additionally, we'll begin our journey into types, as they are the core feature
of TypeScript – it's right in the name. Finally, you will be able to test your
newly gained TypeScript skills by creating your own library.

TypeScript Fundamentals

1

2 | TypeScript Fundamentals

Introduction
The world of online applications has grown tremendously in the past few decades.
With it, web-based applications have grown not only in size but also in complexity.
JavaScript, a language that was originally thought of and used as a go-between
between the core application logic and the user interface, is being seen in a different
light. It is the de facto language with which web apps are being developed. However,
it just was not designed for the building of large applications with lots of moving
parts. Along came TypeScript.

TypeScript is a superset of JavaScript that provides lots of enterprise-level features
that JavaScript lacks, such as modules, types, interfaces, generics, managed
asynchrony, and so on. They make our code easier to write, debug, and manage. In
this chapter, you will first learn how the TypeScript compiler works, how transpilation
occurs, and how you can set up the compiler options to suit your needs. Then, you
will dive straight into TypeScript types, functions, and objects. You will also learn
how you can make your own types in TypeScript. Finally, you can test your skills by
attempting to create your own library to work with strings. This chapter serves as a
launchpad with which you can jump-start your TypeScript journey.

The Evolution of TypeScript

TypeScript was designed by Microsoft as a special-purpose language with a single
goal – to enable people to write better JavaScript. But why was that an issue at all? To
understand the problem, we have to go back to the roots of the scripting languages
for the web.

In the beginning, JavaScript was designed to enable only a basic level of interactivity
on the web.

Note

JavaScript was initially developed in 1995 by Brendan Eich for use in
Netscape Navigator.

Introduction | 3

It was specifically not designed to be the main language that runs within a web page,
but to be a kind of glue between the browser and the plugins, such as Java applets
that run on the site. The heavy lifting was supposed to be done by the plugin code,
with JavaScript providing a simple layer of interoperability. JavaScript did not even
have any methods that would enable it to access the server. Another design goal for
JavaScript was that it had to be easy to use for non-professional developers. That
meant that the language had to be extremely forgiving of errors, and quite lax with
its syntax.

For a few years, that was the task that JavaScript (or, more properly, ECMAScript, as
it was standardized) was actually doing. But more and more web pages came into
existence, and more and more of them needed dynamic content. Suddenly, people
needed to use a lot of JavaScript. Web pages started getting more and more complex,
and they were now being referred to as web applications. JavaScript got the ability
(via AJAX) to access servers and even other sites, and a whole ecosystem of libraries
appeared that helped us write better web applications.

However, the language itself was still lacking lots of features that are present in most
languages – primarily features that are targeted toward professional developers.

Note

Some of the most talked-about features included a lack of module/
namespace support, type-checked expressions, better scoping
mechanisms, and better support for asynchronous functionality.

Since it was designed for small-scale usage, it was very troublesome to build, and
especially to maintain, large applications built with JavaScript. On the other hand,
once it was standardized, JavaScript became the only way to actually run code
inside the browser. So, one solution that was popular in the 2000s was to make
an emulation layer – a kind of a tool that enabled developers to use their favorite
language to develop an application that will take the original source code as input
and output equivalent JavaScript code. Such tools became known as transpilers – a
portmanteau of the words "translator" and "compiler." While traditional compilers
take source code as input and output machine code that can execute directly on the
target machine, transpilers basically translated the source code from one language to
another, specifically to JavaScript. The resulting code is then executed on the browser.

4 | TypeScript Fundamentals

Note

The code actually gets compiled inside the browser, but that's another story.

There were two significant groups of transpilers present – ones that transpiled from
an existing language (C#, Java, Ruby, and so on) and ones that transpiled from a
language specifically designed to make web development easier (CoffeeScript, Dart,
Elm, and so on).

Note

You can see a comprehensive list at https://packt.link/YRoA0.

The major problem with most transpilers was that they were not native to the web
and JavaScript. The JavaScript that was generated was confusing and non-idiomatic
– it looked like it was written by a machine and not a human. That would have been
fine, except that generated mess was the code that was actually executing. So, using
a transpiler meant that we had to forgo the debugging experience, as we could not
understand what was actually being run. Additionally, the file size of the generated
code was usually large, and more often than not, it included a huge base library that
needed to load before we would be able to run our transpiled code.

Basically, by 2012 there were two options in sight – write a large web application using
plain JavaScript, with all the drawbacks that it had, or write large web applications
using a transpiler, writing better and more maintainable code, but being removed
from the platform where our code actually runs.

Then, TypeScript was introduced.

Note

A video of the introductory lecture is available at
https://channel9.msdn.com/Events/Build/2012/3-012.

https://packt.link/YRoA0
https://channel9.msdn.com/Events/Build/2012/3-012

Introduction | 5

Design Goals of TypeScript

The core idea behind it was one that, in hindsight, seems quite obvious. Instead
of replacing JavaScript with another language, why not just add the things that are
missing? And why not add them in such a way that they can be very reasonably
removed at the transpiling step, so that the generated code will not only look and be
idiomatic but also be quite small and performant? What if we can add things such
as static typing, but in an optional way, so that it can be used as much or as little
as we want? What if all of that existed while we're developing and we can have nice
tooling and use a nice environment, yet we're still able to debug and understand the
generated code?

The design goals of TypeScript, as initially stated, were as follows:

• Extend JavaScript to facilitate writing large applications.

• Create a strict superset of JavaScript (that is, any valid JavaScript is
valid TypeScript).

• Enhance the development tooling support.

• Generate JavaScript that runs on any JavaScript execution environment.

• Easy transfer between TypeScript and JavaScript code.

• Generate clean, idiomatic JavaScript.

• Align with future JavaScript standards.

Sounds like a pie-in-the-sky promise, and the initial response was a bit lukewarm.
But, as time progressed, and as people actually tried it and started using it in real
applications, the benefits became obvious.

Note

The author's lecture on TypeScript, which was the first one to be broadcast
worldwide by a non-Microsoft employee, can be found at
https://www.slideshare.net/sweko/typescript-javascript-done-right.

https://www.slideshare.net/sweko/typescript-javascript-done-right

6 | TypeScript Fundamentals

Two areas where TypeScript became a power player were JavaScript libraries and
server-side JavaScript, where the added strictness of type checking and formal
modules enabled higher-quality code. Currently, all of the most popular web
development frameworks are either natively written in TypeScript (such as Angular,
Vue, and Deno) or have tight integrations with TypeScript (such as React and Node).

Getting Started with TypeScript
Consider the following TypeScript program – a simple function that adds
two numbers:

Example 01.ts

1 function add (x, y) {
2 return x + y;
3 }

Link to the example on GitHub: https://packt.link/P9k6d

No, that's not a joke – that's real-life TypeScript. We just did not use any TypeScript-
specific features. We can save this file as add.ts and can compile it to JavaScript
using the following command:

tsc add.ts

This will generate our output file, add.js. If we open it and look inside, we can see
that the generated JavaScript is as follows:

Example 01.js

1 function add(x, y) {
2 return x + y;
3 }

Link to the example on GitHub: https://packt.link/mTfWp

Yes, aside from some spacing, the code is identical, and we have our first
successful transpilation.

https://packt.link/P9k6d
https://packt.link/mTfWp

Getting Started with TypeScript | 7

The TypeScript Compiler

We will add to the example, of course, but let's take a moment to analyze what
happened. First of all, we gave our file the .ts file extension. All TypeScript files
have this extension, and they contain the TypeScript source code of our application.
But, even if our code is valid JavaScript (as in this case), we cannot just load the
.ts files inside a browser and run them. We need to compile/transpile them using
the tool called the "TypeScript compiler," or tsc for short. What this tool does is
takes TypeScript files as arguments and generates JavaScript files as outputs. In our
case, our input was add.ts and our output was add.js. The tsc compiler is an
extremely powerful tool, and it has a lot of options that we're able to set. We can get
a full list of the options using this command:

tsc --all

The most common and important ones are as follows:

• –outFile: With this option, we can specify the name of the output file we want
to be generated. If it's not specified, it defaults to the same name as the input
file, but with the .js extension.

• –outDir: With this option, we can specify the location of the output file(s). By
default, the generated files will be in the same location as the source files.

• –types: With this option, we can specify additional types that will be allowed in
our source code.

• –lib: With this option, we specify which library files need to be loaded. As
there are different execution environments for JavaScript, with different default
libraries (for example, browser JavaScript has a window object, and Node.js has
a process object), we can specify which one we want to target. We can also
use this option to allow or disallow specific JavaScript functionality. For example,
the array.include method was added in the es2016 JavaScript version. If
we want to assume that the method will be available, then we need to add the
es2016.array.include library.

8 | TypeScript Fundamentals

• –target: With this option, we specify which version of the ECMAScript
(that is, JavaScript) language we're targeting. That is, if we need to support
older browsers, we can use the ES3 or ES5 values, which will compile our
code to JavaScript code that will execute in any environment that supports,
correspondingly, versions 3 and 5 of the JavaScript language. If, on the other
hand, we know that we'll run in an ultra-modern environment, as the latest
Node.js runtime, we can use the ES2020 target, or even ESNEXT, which is
always the next available version of the ECMAScript language.

• There are several more options; however, we have only discussed a few here.

Setting Up a TypeScript Project

Since the TypeScript compiler has lots of options, and we'll need to use quite a few
of them, specifying all of them each and every time we transpile a file will get tedious
very fast. In order to avoid that, we can save our default options in a special file that
will be accessed by the tsc command. The best way to generate this special file
called tsconfig.json is to use tsc itself with the --init option. So, navigate
to the folder where you want to store your TypeScript project and execute the
following command:

tsc --init

This will generate a tsconfig.json file with the most commonly used option.
The rest of the options are commented out, so if we want to use some other set of
options, we can simply uncomment what we need. If we ignore the comments (which
include a link to the documentation about the options), we get the following content:

{

 "compilerOptions": {

 "target": "es5",

 "module": "commonjs",

 "strict": true,

 "esModuleInterop": true,

 "skipLibCheck": true,

 "forceConsistentCasingInFileNames": true

 }

}

Getting Started with TypeScript | 9

You can see that each and every option in the tsconfig.json file has a
corresponding command-line switch, for example, module, target, and so on. If a
command-line switch is specified, it takes precedence. However, if a command-line
switch is not defined, then tsc looks for the nearest tsconfig.json file up the
directory hierarchy and takes the value specified there.

Exercise 1.01: Using tsconfig.json and Getting Started with TypeScript

In this exercise, we'll see how to command TypeScript using the tsconfig.json
file. We'll see how to create TypeScript files and transpile them to JavaScript, based on
the options we specify:

Note

Please make sure you have installed Visual Studio (VS) Code and
followed the installation steps as mentioned in the Preface. The code files
for this exercise can be found here: https://packt.link/30NuU.

1. Create a new folder and execute the following command in a new terminal
within it:

tsc --init

2. Verify that a new tsconfig.json file is created within the folder and that its
target value is es5.

3. Create a new file called squares.ts inside it.

4. In squares.ts, create a function called squares:

function squares(array: number[]) {

5. Create a new array from the input argument, using the JavaScript map function
with an arrow function argument:

 const result = array.map(x => x * x);

https://packt.link/30NuU

10 | TypeScript Fundamentals

6. Return the new array from the function:

 return result;

}

7. Save the file and run the following command in the folder:

tsc squares.ts

8. Verify that there is a new file in the folder called squares.js with the
following content:

function squares(array) {

 var result = array.map(function (x) { return x * x; });

 return result;

}

Here, we can see that the transpilation step did several things:

- It removed the type annotation from the array: number[] parameter,
transpiling it to array.

- It changed the const result variable declaration to a var
result declaration.

- It changed the arrow function, x=>x*x, to a regular function, function (x)
{ return x * x; }.

While the first is TypeScript-specific code, the second and third are examples of
TypeScript's backward compatibility – both the arrow functions and the const
declarations are JavaScript features that were introduced in the ES6 version of
the language.

9. Run the following command in the folder:

tsc --target es6 squares.ts

This will override the setting from the tsconfig.json file and it will transpile
the TypeScript code to ES6-compatible JavaScript.

10. Verify that the contents of the squares.js file are now as follows:

function squares(array) {

 const result = array.map(x => x * x);

 return result;

}

Getting Started with TypeScript | 11

You can note that, in contrast to the results in step 8, now the const keyword
and the arrow functions are intact, because the target we specified supports
them natively. This is an extremely important feature of TypeScript. With this
feature, even if we don't use the rich type system that TypeScript provides,
we can still write code in the most modern version of JavaScript available, and
TypeScript will seamlessly transpile our code to a version that can actually be
consumed by our customers.

Types and Their Uses

We've mentioned that TypeScript's type system is its distinguishing feature, so let's
take a better look at it. JavaScript is what's called a loosely typed language. That
means that it does not enforce any rules on the defined variables and their values.
Consider, for example, that we define a variable called count and set it to the value
of 3:

let count = 3;

There is nothing that prevents us from setting that variable to a value that is a string,
a date, an array, or basically any object. All of the following assignments are valid:

count = "string";

count = new Date();

count = false;

count = [1, 2, 3];

count = { key: "value" };

In almost all scenarios, this is not a behavior we actually want. Moreover, since
JavaScript does not know when we are writing the code whether a variable contains
a string or a number, it cannot stop us from trying to, for example, convert it to
lowercase. We cannot know whether that operation will succeed or fail until the
moment we actually try it, when running the code.

Let's take the following example:

let variable;

if (Math.random()>0.5) {

 variable = 3;

} else {

 variable = "String";

}

console.log(variable.toLowerCase());

12 | TypeScript Fundamentals

This code will either output "String" or throw a variable.toLowerCase is
not a function error. The only way to determine whether this code will break is
to actually run it. In a nutshell, in a loosely typed language, while values themselves
have types, variables, on the other hand, don't. They just take the type of the value
they are currently holding. So, any checks whether a method is possible on a variable,
such as variable.toLowerCase(), can only be done when we have the actual
value, that is, when we run the code. Once more, this is quite fine for small-sized
applications, but it can become tedious for large-scale applications. In contrast,
strongly typed languages enforce the type rules for both the values and the variables
they live in. This means that the language itself can detect the error as you are typing
the code, as it has more information about what is going on in your code.

So, in a large software product, (in most cases) we don't want variables that have
values of different types. So, we want to be able to somehow say "this variable has
to be a number, and if someone tries to put something that is not a number inside it,
issue an error."

This is where TypeScript, as a strongly typed language, comes in. We have two ways
that we can use to bind a variable to a type. The simpler one is to simply annotate the
variable with the type we want it to be, like this:

let variable: number;

The : number part of the code is called a type annotation, and we're doing just that
– saying "this variable has to be a number, and if someone tries to put something that
is not a number inside it, issue an error."

Now, if we try to assign a number to that variable, everything is fine. But the minute
we try to assign a string to the variable, we'll get an error message:

Figure 1.1: Error message from assigning an incorrect type

TypeScript and Functions | 13

This type of annotation is explicit and specific to TypeScript. Another way is simply
to assign a value to a variable and let TypeScript work its magic. The magic is called
type inference, and that means that TypeScript will try to guess the type of the variable
based on the value provided.

Let's define a variable and initialize it with a value, like this:

let variable = 3;

Now, if we try to assign a string to that variable, TypeScript will issue an error:

Figure 1.2: Error message from assigning an incorrect type

From the error message, we can see the type that TypeScript correctly inferred for
the variable – number. Actually, in most cases, we won't even need to add type
annotations, as TypeScript's powerful type inference engine will correctly infer the
type of the variable.

TypeScript and Functions
Another huge benefit of TypeScript is automatic function invocation checking.
Let's say that we have the function we used for our first TypeScript file:

function add (x, y) {

 return x + y;

}

Even without any type annotations, TypeScript still has some information about this
function – namely, that it takes two, and exactly two, parameters.

14 | TypeScript Fundamentals

In contrast, JavaScript does not enforce that the number of actual arguments has to
conform to the number of parameters defined, so all of the following invocations are
valid calls in JavaScript:

add(1, 2); // two arguments

add(1, 2, 3); // three arguments

add(1); // one argument

add(); // no arguments

In JavaScript, we can call a function with more arguments than parameters, fewer
arguments, or even without any arguments at all. If we have more arguments
than needed, the extra arguments are simply ignored (and stored in the magical
arguments variable), and if we have fewer arguments than needed, the extra
parameters are given the value undefined. So, in essence, the preceding calls will
be correspondingly transformed into the following:

add(1, 2); // no changes, as the number of arguments match the number of
parameters.
add(1, 2); // the third argument is ignored

add(1, undefined); // the second parameter is given a value of undefined

add(undefined, undefined); // both parameters are given a value of undefined

In the third and fourth cases, the return value of the function will be the special
numeric value NaN.

TypeScript has a radically different approach to this issue. A function can only
be called using valid arguments – both in number and in type. So, if we write the
same code, but this time in a TypeScript file, we'll get appropriate error messages.
For a case where we have extra arguments, we'll get an error message on the
extra arguments:

Figure 1.3: Error message from using an incorrect number of
arguments – too many in this case

TypeScript and Functions | 15

For cases with too few arguments, we get the error message on the method itself:

Figure 1.4: Error message from using an incorrect number
of arguments – too few in this case

In this case, we're notified that a required parameter is missing, as well as what the
name and the type of that parameter should be. Note that it's a common JavaScript
technique to have methods that accept a variable number of parameters, accept
optional parameters, or provide some defaults if a parameter is not specified. All
those cases (and many more) are correctly handled by TypeScript.

Note

Details on how to write such methods using TypeScript are inlcuded in
Chapter 3, Functions.

Of course, parameter checking works not only on the number but also on the type of
the parameters as well. We would want the add function to work only with numbers
– it does not make sense to add a Boolean and an object, for example. In TypeScript,
we can annotate our function like this:

function add (x: number, y: number) {

 return x + y;

}

16 | TypeScript Fundamentals

This will cause the compiler not only to check that the number of arguments matches
the number of parameters but also to verify that the types used for the arguments
are actually valid. Since JavaScript can't check for that, adding a Boolean and an object
is actually a valid call to the JavaScript equivalent of our add method. Furthermore,
since JavaScript tries to be as forgiving as possible, we won't even get a runtime error
– the call will be successful, as JavaScript will coerce both the object and Boolean
to a common string representation, and then try (and succeed) to add those two
values together.

Let's interpret the following call to our function as both JavaScript and TypeScript:

const first = { property: 'value'};

const second = false;

const result = add(first, second);

This is valid, albeit nonsensical, JavaScript code. If run, it will yield the result [object
Object]false, which would not be useful in any context.

The same code, interpreted as TypeScript, will yield the following compile type error:

Figure 1.5: Error message on VS Code

We can also annotate the return type of the function, adding a type annotation after
the parameter list:

function add (x: number, y: number): number {

 return x + y;

}

TypeScript and Functions | 17

That is usually not necessary, as TypeScript can actually infer the return type from
the return statements given. In our case, since x and y are numbers, x+y will be a
number as well, which means that our function will return a number. However, if we
do annotate the return type, TypeScript will enforce that contract as well:

Figure 1.6: TypeScript enforcing the correct type

In either case, whether we explicitly annotate the return type or it's inferred, the type
of the function will be applied to any values that are produced by calling the function.
So, if we assign the return value to some variable, that variable will have the type of
number as well:

Figure 1.7: VS Code showing the type of the variable

18 | TypeScript Fundamentals

Also, if we try to assign the return value to a variable that is already known to be
something else other than a number, we'll get an appropriate error:

Figure 1.8: Error message on VS Code

Let's make another great point about TypeScript and its type system. As can be seen,
the screenshots in this chapter don't show actual compiler error messages – they are
taken from inside a code editor (VS Code, an editor that is itself written in TypeScript).

We did not even have to actually compile the code. Instead, we got the error
messages while we typed the code – an experience that is familiar to developers in
other strongly typed languages, such as C# or Java.

This happens because of the design of the TypeScript compiler, specifically its
Language Service API. This enables the editor to easily use the compiler to check the
code as it's written so that we can get a nice and intuitive GUI. Additionally, since all
the editors will use the same compiler, the development experience will be similar
across different editors. This is a dramatic change from the situation that we started
with – fully writing, loading, and actually executing the JavaScript code in order to
know whether it even makes sense.

Note

In recent years, some editors have started using the TypeScript Language
Service API on JavaScript code as well, so TypeScript improves even the
plain JavaScript development experience.

TypeScript and Functions | 19

In a nutshell, using TypeScript changes one of the most prevalent pain points for
JavaScript development – inconsistent and sometimes even impossible tooling
support – into a much easier and more convenient experience. In our case, we need
only to open a parenthesis when calling the add function, and we'll see the following:

Figure 1.9: List of parameters that the function can take

We are shown a list of parameters that shows that the function – which can be
defined in another file, by another developer – takes two numbers and also returns
a number.

Exercise 1.02: Working with Functions in TypeScript

In this exercise, we'll define a simple function and see how we can and can't invoke
it. The function we will be developing will be a string utility function that shortens a
string to a snippet. We'll basically cut off the text after a given length, but take care
that we don't chop a word in half. If the string is larger than the maximum length,
we'll add an ellipsis (…) to the end:

Note

The code files for this exercise can be found here: https://packt.link/BHj53.

1. Create a new file called snippet.ts.

2. In snippet.ts, define a simple function called snippet:

function snippet (text: string, length: number) : string {

3. Check whether the text is smaller than the specified length, and if it is, return
it unchanged:

 if (text.length < length) {

 return text;

 }

https://packt.link/BHj53

20 | TypeScript Fundamentals

4. If the text is larger than the maximum length, we'll need to add an ellipsis. The
maximum number of characters that we'll be able to show is the specified length
minus the length of our ellipsis (as it takes up space too). We'll use the slice
string method to extract that many characters from the text:

 const ellipsis = "...";

 let result = text.slice(0, length - ellipsis.length);

5. We'll find the last word boundary before the cutoff, using lastIndexOf, and
then combine the text up to that point with the ellipsis:

 const lastSpace = result.lastIndexOf(" ");

 result = `${result.slice(0, lastSpace)}${ellipsis}`;

6. Return the result from the function:

 return result;

}

7. After the function, create a few calls to the function with different
parameter types:

// correct call and usage

const resultOne = snippet("TypeScript is a programming language that
is a strict syntactical superset of JavaScript and adds optional
static typing to the language.", 40);

console.log(resultOne);

// missing second parameter

const resultTwo = snippet("Lorem ipsum dolor sit amet");

console.log(resultTwo);

// The first parameter is of incorrect type

const resultThree = snippet(false, 40);

console.log(resultThree);

// The second parameter is of incorrect type

const resultFour = snippet("Lorem ipsum dolor sit amet", false);

console.log(resultFour);

// The result is assigned to a variable of incorrect type

var resultFive: number = snippet("Lorem ipsum dolor sit amet", 20);

console.log(resultFive);

8. Save the file and run the following command in the folder:

tsc snippet.ts

TypeScript and Functions | 21

9. Verify that the file did not compile correctly. You will get specifics from the
compiler about the errors found, and the compilation will end with the
following message:

Found 3 errors.

10. Comment out or delete all invocations except the first one:

// correct call and usage

var resultOne = snippet("TypeScript is a programming language that is
a strict syntactical superset of JavaScript and adds optional static
typing to the language.", 40);

console.log(resultOne);

11. Save the file and compile it again:

tsc snippet.ts

12. Verify that the compilation ended successfully and that there is a snippet.js
file generated in the same folder. Execute it in the node environment with the
following command:

node snippet.js

You will see an output that looks as follows:

TypeScript is a programming language...

In this exercise, we developed a simple string utility function, using TypeScript.
We saw the two main strengths of TypeScript. For one, we can see that the code is
idiomatic JavaScript – we could leverage our existing JavaScript knowledge to write the
function. Steps 3 through 6, the actual body of the function, are exactly the same in
JavaScript and TypeScript.

Next, we saw that TypeScript takes care that we invoke the function correctly. In step
7, we tried five different invocations of the function. The last four invocations are
incorrect ones – they would have been errors either in JavaScript or TypeScript. The
important difference is that with TypeScript, we immediately got feedback that the
usage is invalid. With JavaScript, the errors would have only been visible when we, or
a client, actually executed the code.

22 | TypeScript Fundamentals

TypeScript and Objects
One great thing about JavaScript is its object literal syntax. While in some languages,
to create an object we have to do a lot of groundwork, such as creating classes and
defining constructors, in JavaScript, and by extension in TypeScript, we can just create
the object as a literal. So, if we want to create a person object, with firstName and
lastName properties, we only need to write the following:

const person = {

 firstName: "Ada",

 lastName: "Lovelace"

}

JavaScript makes it easy to create and use the object, just like any other value. We can
access its properties, pass it as an argument into methods, receive it as a return
value from functions, and so on. And because of JavaScript's dynamic nature, it's very
easy to add properties to our object. If we wanted to add an age property to our
object, we could just write the following:

person.age = 36;

However, because of the loose typing, JavaScript has no knowledge of our object. It
does not know what the possible properties of our object are, and what methods
can and cannot use it as an argument or a return value. So, say we make a typo, for
example, writing out something like this:

console.log("Hi, " + person.fristName);

JavaScript will happily execute this code and write out Hi undefined. That is not
what we intended, and will only be visible and detectible when the code is actually
run in the browser. Using TypeScript, we have a few options to remedy that. So, let's
rewrite our person object using TypeScript:

const person = {

 firstName: "Ada",

 lastName: "Lovelace"

}

console.log(`Hi, ${person.fristName}`);

TypeScript and Objects | 23

This code will immediately be marked as invalid by the compiler, even when we
haven't added any type information:

Figure 1.10: TypeScript compiler inferring the type of the object

From the error message, we can see what the TypeScript compiler inferred for the
type of our object – it thinks that its type consists of two properties, firstName of
type string and lastName of type string. And according to that definition, there
is no place for another property called fristName, so we are issued an error.

Note

Notice the suggestion Did you mean 'firstName'? along with
the link to the definition of the person class. Since typos are common,
the type inference algorithm tries to detect and offer suggestions on
common typos.

So, once more, we have detected a bug in our code just by using TypeScript, with no
additional code written. TypeScript does this by analyzing the definition of the object
and extracts the data from there. It will allow us to write code such as the following:

person.lastName = "Byron";

24 | TypeScript Fundamentals

But it will not allow us to write code where we set lastName to a number:

Figure 1.11: Error message by assigning an incorrect type to lastName

Sometimes, we know more about the shape of our objects than TypeScript does. For
example, TypeScript inferred that our type has only the firstName and lastName
properties. So, if we set the age in TypeScript, with person.age = 36;, we will
get an error. In this case, we can explicitly define the type of our object, using a
TypeScript interface. The syntax that we can use looks as follows:

interface Person {

 firstName: string;

 lastName: string;

 age? : number;

}

With this piece of code, we're defining an abstract – a structure that some object will
need to satisfy in order to be allowed to be treated as a Person object. Notice the
question mark (?) next to the age variable name. That denotes that that property
is in fact optional. An object does not have to have an age property in order to be a
Person object. However, if it does have an age property, that property has to be a
number. The two other properties (firstName and lastName) are mandatory.

Using this definition, we can define and use our object using the following:

const person: Person = {

 firstName: "Ada",

 lastName: "Lovelace"

}

person.age = 36;

TypeScript and Objects | 25

We can use interfaces as type annotations for function arguments and return types
as well. For example, we can define a function called showFullName that will take a
person object and display the full name to the console:

function showFullName (person: Person) {

 console.log(`${person.firstName} ${person.lastName}`)

}

If we invoke this function with showFullName(person), we'll see that it will
display Ada Lovelace on the console. We can also define a function that will take
two strings, and return a new object that fits the Person interface:

function makePerson (name: string, surname: string): Person {

 const result = {

 firstName: name,

 lastName: surname

 }

 return result;

}

const babbage = makePerson("Charles", "Babbage");

showFullName(babbage);

One important thing that we need to point out is that, unlike in other languages, the
interfaces in TypeScript are structural and not nominal. What that means is that if
we have a certain object that fulfills the "rules" of the interface, that object can be
considered to be a value of that interface. In our makePerson function, we did not
specify that the result variable is of the Person type – we just used an object
literal with firstName and lastName properties, which were strings. Since that
is enough to be considered a person, the code compiles and runs just fine. This is a
huge boon to the type inference system, as we can have lots of type checks without
having to explicitly define them. In fact, it's quite common to omit the return type
of functions.

26 | TypeScript Fundamentals

Exercise 1.03: Working with Objects

In this exercise, we'll define a simple object that encapsulates a book with a few
properties. We'll try to access and modify the object's data and verify that TypeScript
constrains us according to inferred or explicit rules. We will also create a function that
takes a book object and prints out the book's details:

Note

The code files for this exercise can be found here: https://packt.link/N8y1f.

1. Create a new file called book.ts.

2. In book.ts, define a simple interface called Book. We will have properties for
the author and the title of the book, optional properties for the number of pages
of the book, and a Boolean that denotes whether we have read the book:

interface Book {

 author: string;

 title: string;

 pages?: number;

 isRead?: boolean;

}

3. Add a function called showBook that will display the book's author and title to
the console. It should also display whether the book has been read or not, that
is, whether the isRead property is present:

function showBook(book: Book) {

 console.log(`${book.author} wrote ${book.title}`);

 if (book.isRead !== undefined) {

 console.log(` I have ${book.isRead ? "read" : "not read"}
this book`);
 }

}

4. Add a function called setPages that will take a book and a number of pages as
parameters, and set the pages property of the book to the provided value:

function setPages (book: Book, pages: number) {

 book.pages = pages;

}

https://packt.link/N8y1f

TypeScript and Objects | 27

5. Add a function called readBook that will take a book and mark it as having
been read:

function readBook(book: Book) {

 book.isRead = true;

}

6. Create several objects that fulfill the interface. You can, but don't have to,
annotate them with the interface we have created:

const warAndPeace = {

 author: "Leo Tolstoy",

 title: "War and Peace",

 isRead: false

}

const mobyDick: Book = {

 author: "Herman Melville",

 title: "Moby Dick"

}

7. Add code that will call methods on the books:

setPages(warAndPeace, 1225);

showBook(warAndPeace);

showBook(mobyDick);

readBook(mobyDick);

showBook(mobyDick);

8. Save the file and run the following command in the folder:

tsc book.ts

9. Verify that the compilation ended successfully and that there is a book.js
file generated in the same folder. Execute it in the node environment with the
following command:

node book.js

You will see an output that looks as follows:

Leo Tolstoy wrote War and Peace

 I have not read this book

Herman Melville wrote Moby Dick

28 | TypeScript Fundamentals

Herman Melville wrote Moby Dick

 I have read this book

In this exercise, we created and used an interface, a purely TypeScript construct. We
used it to describe the shape of the objects we will use. Without actually creating
any specific objects of that shape, we were able to use the full power of TypeScript's
tooling and type inference to create a couple of functions that operate on the objects
of the given shape.

After that, we were able to actually create some objects that had the required shape
(with and without making the declaration explicit). We were able to use both kinds of
objects as parameters to our functions, and the results were in line with the interface
we declared.

This demonstrated how a simple addition of an interface made our code much safer
to write and execute.

Basic Types
Even though JavaScript is a loosely typed language, that does not mean that values do
not have types. There are several primitive types that are available to the JavaScript
developer. We can get the type of the value using the typeof operator, available
both in JavaScript and TypeScript. Let's inspect some values and see what the results
will be:

const value = 1234;

console.log(typeof value);

The execution of the preceding code will write the string "number" to the console.
Now, consider another snippet:

const value = "textual value";

console.log(typeof value);

The preceding expression will write the string "string" to the console. Consider the
following snippet:

const value = false;

console.log(typeof value);

This will write out "boolean" to the console.

Basic Types | 29

All of the preceding types are what are called "primitives." They are baked directly into
the execution environment, whether that is a browser or a server-side application. We
can always use them as needed. There is an additional primitive type that has only
a single value, and that's the undefined type, whose only value is undefined. If we
try to call typeof undefined, we will receive the string "undefined". Other than
the primitives, JavaScript and by extension TypeScript have two so-called "structural"
types. Those are, respectively, objects, that is, custom-created pieces of code that
contain data, and functions, that is, custom-created pieces of code that contain logic.
This distinction between data and logic is not a clear-cut border, but it can be a useful
approximation. For example, we can define an object with some properties using the
object literal syntax:

const days = {

 "Monday": 1,

 "Tuesday": 2,

 "Wednesday": 3,

 "Thursday": 4,

 "Friday": 5,

 "Saturday": 6,

 "Sunday": 7,

}

Calling the typeof operator on the days object will return the string "object".
We can also use the typeof operator if we have an add function as we
defined before:

function add (x, y) {

 return x + y;

}

console.log(typeof add);

This will display the string "function".

Note

Recent versions of JavaScript added bigint and symbol as primitive
types, but they won't be encountered outside of specific scenarios.

30 | TypeScript Fundamentals

Exercise 1.04: Examining typeof

In this exercise, we'll see how to use the typeof operator to determine the type of a
value, and we will investigate the responses:

Note

The code files for this exercise can be found here: https://packt.link/uhJqN.

1. Create a new file called type-test.ts.

2. In type-test.ts, define several variables with differing values:

const daysInWeek = 7;

const name = "Ada Lovelace";

const isRaining = false;

const today = new Date();

const months = ["January", "February", "March"];

const notDefined = undefined;

const nothing = null;

const add = (x:number, y: number) => x + y;

const calculator = {

 add

}

3. Add all the variables into a containing array, using the array literal syntax:

const everything = [daysInWeek, name, isRaining, today, months,
notDefined, nothing, add, calculator];

4. Loop all the variables using a for..of loop, and for each value, call the
typeof operator. Show the result on the console, along with the value itself:

for (const something of everything) {

 const type = typeof something;

 console.log(something, type);

}

5. Save the file and run the following command in the folder:

tsc type-test.ts

https://packt.link/uhJqN

Basic Types | 31

6. After the compilation is done, you will have a type-test.js file. Execute it in
the node environment with the following command:

node type-test.js

You will see that the output is as follows:

7 number

Ada Lovelace string

false boolean

2021-04-05T09:14:56.259Z object

['January', 'February', 'March'] object

undefined undefined

null object

[Function: add] function

{ add: [Function: add] } object

Note specifically the output from the months and nothing. typeof variables will
return the string "object" both for arrays and the null value. Also note that the
calculator variable is an object whose only property is actually a function; that
is, we have an object whose piece of data is actually a piece of logic. This is possible
because functions are first-class values in JavaScript and TypeScript, which means
that we can manipulate them just like we would regular values.

Strings

Words and text are part of any application, just as they are part of everyday life. In
JavaScript, they are represented by the string type. Unlike in other languages,
such as C++ or Java, strings in JavaScripts are not treated as an array-like object that
consists of smaller parts (characters). Instead, strings are a first-order citizen of
JavaScript. In addition, JavaScript strings natively support Unicode, so we won't get
any problems with characters with, for example, Cyrillic or Arabic script. Just like in
JavaScript, to define a string in TypeScript, we can use single quotes (') or double
quotes ("). Of course, if we start the string with a single quote, we have to end it with
a single quote, and vice versa. We can also use a special type of string definition,
called template strings. These strings are delimited with the backtick character (`) and
support two very important things for web development – newlines and embedded
expressions. They are supported in all environments that support ES2015, but
TypeScript is able to compile to any JavaScript target environment.

32 | TypeScript Fundamentals

Using embedded expressions and newlines inside a string enables us to generate
nice HTML, because instead of string concatenation, we're able to use embedded
expressions to have a much clearer view of the generated output. For example, if we
had a person object with firstName and lastName properties, and we wanted to
display a simple greeting inside a <div> tag, we would have to write code as follows:

const html = "<div class=\"greeting\">\nHello, " + firstName + " " +
lastName + "\n</div>";

From this code (which can get much more complex), it's difficult to see what
will actually be written and where. Using template strings transforms this into
the following:

const html = `<div class="greeting">

 Hello, ${firstName} ${lastName}

</div>";

In order to output the firstName and lastName values, we have to surround
them with brackets ({}), preceded by a dollar sign ($). We are not limited to variable
names, but can have whole expressions, including the conditional operator (?:).

Numbers

Numbers are an important aspect of the world. We use them to quantify everything
around us. And, it's worth noting, that there are two quite different kinds of numbers
that you encounter in your daily life – integers and real numbers. One distinguishing
difference between the two kinds of numbers is that integers are numbers without
any fractional part. These often result from counting things; for example, the number
of people in town. On the other hand, real numbers can have a fractional component
to them. For example, the weight or height of a person is often a real number.

In most programming languages, these two types of numbers are represented with
(at least) two different primitive types; for example, in C#, we have a type called int
for integers and a type called float for real numbers.

In JavaScript, and consequently in TypeScript, they are indeed the same primitive
type. That primitive type is simply called number. Under the hood, it's a 64-bit
floating-point number, fully implementing the IEEE 754 standard. This standard
is specified for real numbers, and this leads to some weirdness that is specific to
JavaScript. For example, in most environments, dividing by zero results in an error. In
JavaScript and TypeScript, division by zero results in some special numbers such as
Infinity or NaN. Additionally, there is no concept of integer division in JavaScript,
as division is always done using real numbers.

Basic Types | 33

However, even if everything is stored as floating-point real numbers, JavaScript
guarantees that all operations that can be done using only integer arithmetic will
be done exactly. One famous example of this behavior is adding 0.1 to 0.2. In all
compliant JavaScript engines, we get the result 0.30000000000000004 because
of the finite precision of the underlying type. What we are guaranteed is that we
can never get a decimal result if we are adding integers. The engine makes sure
that 1+1=2 with no decimal remainder. All integer operations are completely safe,
but only if the results are within a specified range. JavaScript has a special constant
defined (Number.MAX_SAFE_INTEGER) with a value of 9007199254740991
(with digit grouping, this is represented as 9.007.199.254.740.991) over which
we might get precision and rounding errors.

Booleans

Booleans are one of the simplest, and also one of the most used and useful, primitive
types. This datatype has exactly two values, true and false. The useful thing is
that if a variable of this type does not have a certain value, well, then it automatically
has the other, as that is the only other possible option. In theory, this is sound, but
in JavaScript, there are a lot of possibilities for things to go wrong. Since it has no
type information, it cannot guarantee that a certain variable actually holds a Boolean
value, which means that we always have to be careful of our Boolean checks.

TypeScript completely defines away this problem. Say we define a variable as a
Boolean, using either a type annotation or type inference, as follows:

let isRead = false;

We can be absolutely sure that the variable will always have exactly one of the two
possible values.

Arrays

One of the reasons computers are popular, aside from accessing social networking
sites and playing video games, is that they are able to run the same processing
algorithm on a whole collection of values, as many times as needed, without getting
bored or making any errors. In order to be able to do that, we need to somehow
organize the data into a collection of similar values that we can access one at a time.
In JavaScript, the primary mechanism for such processing is the array. JavaScript has
an extremely simple interface for creating arrays using the array literal syntax. We
just list the elements, surrounded by brackets ([]), and we have an array:

const numbers = [1, 2, 3, 4, 5];

34 | TypeScript Fundamentals

We can access that array using an index:

console.log(numbers[3]) // writes out 4, as arrays in JavaScript are
//…0-based
numbers[1] = 200; // the second element becomes 200

That makes it easy to use a for loop to go through the elements and process them
all with a single piece of code:

for (let index = 0; index < numbers.length; index += 1) {

 const element = numbers[index];

 console.log(`The element at index ${index} has a value of
${element}`);
}

We can also use a for..of loop to iterate through the values, and the following
snippet will calculate the sum of all the numbers in the array:

let sum = 0;

for (const element of numbers) {

 sum += element;

}

As with anything in JavaScript, it has no mechanism to enforce that all the items in
an array satisfy the "similarity" requirement we mentioned previously. So, there's
nothing stopping us from adding a string, a Boolean, an object, or even a function to
the array of numbers we have defined. All of these are valid JavaScript commands
that will execute successfully:

numbers[1] = false;

numbers[2] = new Date();

numbers[3] = "three";

numbers[4] = function () {

 console.log("I'm really not a number");

};

In almost all cases, it is not to our benefit to have an array with vastly different types
as elements. The main benefit of arrays is that we can group similar items together
and work with all of them with the same code. If we have different types, we lose that
advantage, so we might as well not use an array at all.

Basic Types | 35

With TypeScript, we can restrict the type so that an array will only allow a single type
of value for its elements. Arrays have something that is referred to as a composite
or generic type. That means that when we are specifying the type of the array, we're
specifying it indirectly, via another type.

In this case, we define the type of the array through the type of the array's elements,
for example, we can have an array whose elements will be numbers or an array
whose elements will be strings. In TypeScript, we denote that by writing the type of
the element and then appending brackets to the type name. So, if we needed our
numbers array to only accept values whose type is number, we will denote that
as follows:

let numbers: number[];

Even better, if we are initializing our array, we can omit the type annotation and let
TypeScript infer the value:

Figure 1.12: TypeScript inferring the type of the elements in the array

As shown previously, TypeScript will not let us use the push method with a value
whose type does not match the type of the elements, nor will it allow elements to be
set to invalid values.

Another, equivalent way to denote the type of the array is to use generic type syntax.
In that case, we can use the Array type, with the type of the actual elements in
angle brackets:

let numbers: Array<number>;

Generic classes and methods will be covered in detail in Chapter 9, Generics and
Conditional Types.

36 | TypeScript Fundamentals

The benefit here is that we can be certain that if an array claims to have elements
of a certain type, it will indeed have that kind of element, and we can process them
without worrying that a bug introduced an incompatible element.

Tuples

Another common usage of arrays in JavaScript is to group data – just like objects, but
without the hassle (and benefit) of property names. We could, for example, instead of
creating a person object create a person array where, by convention, we'll use the
first element to hold the first name, the second element to hold the last name, and
the third element to hold the age. We could define such an array using the following:

const person = ["Ada", "Lovelace", 36];

console.log(`First Name is: ${person[0]}`);

console.log(`Last Name is: ${person[1]}`);

console.log(`Age is: ${person[2]}`);

In this case, even as we are using the same structure – an array – we're not using
it to group an unknown number of unrelated data of the same type, we're using it
to group a known number of related data that can be of separate types. This kind
of array is called a tuple. Once more, JavaScript has no mechanism to enforce the
structure of a tuple, so in our code we can do lots of things that are syntactically valid,
but nonsensical semantically. We could add a fourth element in the array, we can set
the first element to be a number, the third to be a function, and so on.

With TypeScript, we can formally define the number and types of the data elements
that we need inside a tuple, using syntax such as the following:

const person: [string, string, number] = ["Ada", "Lovelace", 36];

The [string, string, number] declaration tells TypeScript that we intend
to use a tuple of three elements, that the first two elements will be a string, and
the third will be a number. TypeScript now has enough information to enforce the
structure. So, if we write code that will call the toLowerCase method on the first
element of the tuple and multiply the third element by 10, that will work, as the first
operation is valid on a string and the second is valid on a number:

console.log(person[0].toLowerCase());

console.log(person[2] * 10);

Basic Types | 37

But if we try the operations the other way around, we'll get errors on both calls:

Figure 1.13: TypeScript error when performing incorrect operations

Additionally, if we try to access an element that is outside of the defined range, we'll
get an error as well:

Figure 1.14: TypeScript when accessing elements outside the defined range

Schwartzian transform

Arrays have a helpful sort function, which we can use to sort the objects contained in
the array. However, during the sorting process, multiple comparisons will be done on
the same objects. For example, if we sort an array of 100 numbers, the method that
compares two numbers will be called more than 500 times, on average. Let's say that
we have a Person interface, defined with the following:

interface Person {

 firstName: string;

 lastName: string;

}

38 | TypeScript Fundamentals

If we want to get the full name of the person, we might use a function such as this:

function getFullName (person: Person) {

 return `${person.firstName} ${person.lastName}`;

}

If we have an array of Person objects, called persons, and want to sort it according
to full name, we might use the following code:

persons.sort((first, second) => {

 const firstFullName = getFullName(first);

 const secondFullName = getFullName(second);

 return firstFullName.localeCompare(secondFullName);

})

This will sort the persons array, albeit in an inefficient manner. If we have
100 Person objects, this means that we have 100 different targets for the
getFullName functions. But if we have more than 500 calls to the comparison
function, that would mean that we have more than 1,000 calls to the getFullName
function, so at least 900 calls are redundant.

Note

The relation gets worse: for 10,000 persons, we will have around a quarter
of a million redundant calls.

Our method is fast and trivial, but if some expensive calculations were needed, simple
sorting could slow down our application.

Fortunately, there's a simple technique called a Schwartzian transform that can help
us with that. The technique has three parts:

• We will transform each element in the array into a tuple of two elements. The
first element of the tuple will be the original value, and the second will be the
result of the ordering function (colloquially, the Schwartz).

• We will sort the array on the second element of the tuple.

• We will transform each tuple, discarding the ordering element and taking the
original value.

We will employ this technique in the following exercise.

Basic Types | 39

Exercise 1.05: Using Arrays and Tuples to Create an Efficient Sort of Objects

In this exercise, we are going to employ the Schwartzian transform to sort and print a
predefined array of programmers. Each programmer object will be an instance of the
Person interface, defined in the previous section.

We'll want to sort the programmers based on their full name, which can be calculated
using the getFullName function, also from the previous section.

In order to implement a Schwartzian transform, we'll take the following steps:

We'll use the map method of the array in order to transform our programmers into
a tuple of the [Person, string] type, where the first element is the actual
programmer and the second element is the full name string.

We'll use the sort method of the array to sort the tuples, using the second element
of each tuple.

We'll use the map method once more to transform the tuples back to an array of
programmers by just taking the first element and discarding the second element.

Let's start:

Note

The code files for this exercise can be found here: https://packt.link/EgZnX.

1. Create a new file called person-sort.ts.

2. Inside the file, create the interface for the Person objects:

interface Person {

 firstName: string;

 lastName: string;

}

3. Create the function that will get the full name of a given person:

let count = 0;

function getFullName (person: Person) {

 count += 1;

 return `${person.firstName} ${person.lastName}`;

}

https://packt.link/EgZnX

40 | TypeScript Fundamentals

We will use the count variable to detect the total number of calls of
the function.

4. Define an array of persons and add a few objects with firstName and
lastName properties:

const programmers: Person[] = [

 { firstName: 'Donald', lastName: 'Knuth'},

 { firstName: 'Barbara', lastName: 'Liskow'},

 { firstName: 'Lars', lastName: 'Bak'},

 { firstName: 'Guido', lastName: 'Van Rossum'},

 { firstName: 'Anders', lastName: 'Hejslberg'},

 { firstName: 'Edsger', lastName: 'Dijkstra'},

 { firstName: 'Brandon', lastName: 'Eich'},

 // feel free to add as many as you want

];

5. Define a naïve and straight forward sorting function:

// a naive and straightforward sorting function

function naiveSortPersons (persons: Person[]): Person[] {

 return persons.slice().sort((first, second) => {

 const firstFullName = getFullName(first);

 const secondFullName = getFullName(second);

 return firstFullName.localeCompare(secondFullName);

 })

}

6. Use a Schwartzian transform and define a function that will take an array of
persons and return (a sorted) array of persons:

function schwartzSortPersons (persons: Person[]): Person[] {

7. Use the array's map function to transform each element into a tuple:

 const tuples: [Person, string][] = persons.map(person => [person,
getFullName(person)]);

8. Sort the tuples array of tuples, using the standard sort method:

 tuples.sort((first, second) => first[1].localeCompare(second[1]));

We should note that the sort function takes two objects, in our case, two
tuples, and we sort the tuples according to their second element – the result of
the getFullName call.

Basic Types | 41

9. Transform the sorted array of tuples into the format we want – just an array
of person objects – by taking the first element of each tuple, discarding
the Schwartz:

 const result = tuples.map(tuple => tuple[0]);

10. The last three steps are the three parts of the Schwartzian transform.

11. Return the new array from the function:

 return result;

}

12. Add a line that will call the naiveSortPersons function on our defined array:

count = 0;

const sortedNaive = naiveSortPersons(programmers);

13. Output both the sorted array, and the count variable.

console.log(sortedNaive);

console.log(`When called using the naive approach, the function was
called ${count} times`);

14. Add a line that will call the schwartzSortPersons function on our
defined array:

count = 0;

const sortedSchwartz = schwartzSortPersons(programmers);

15. Output both the sorted array and the count variable. The count variable
should be identical to the number of items in the array, which is 7 in our
example. Without the optimization, the method would have been called
28 times:

console.log(sortedSchwartz);

console.log(`When called using the Schwartzian transform approach,
the function was called ${count} times`);

16. Save and compile the file:

tsc person-sort.ts

17. Verify that the compilation ended successfully and that there is a person-
sort.js file generated in the same folder. Execute it in the node environment
with the following command:

node person-sort.js

42 | TypeScript Fundamentals

You will see an output that looks as follows:

[

 { firstName: 'Anders', lastName: 'Hejslberg' },

 { firstName: 'Barbara', lastName: 'Liskow' },

 { firstName: 'Brandon', lastName: 'Eich' },

 { firstName: 'Donald', lastName: 'Knuth' },

 { firstName: 'Edsger', lastName: 'Dijkstra' },

 { firstName: 'Guido', lastName: 'Van Rossum' },

 { firstName: 'Lars', lastName: 'Bak' }

]

When called using the naive approach, the function was called 28
times
[

 { firstName: 'Anders', lastName: 'Hejslberg' },

 { firstName: 'Barbara', lastName: 'Liskow' },

 { firstName: 'Brandon', lastName: 'Eich' },

 { firstName: 'Donald', lastName: 'Knuth' },

 { firstName: 'Edsger', lastName: 'Dijkstra' },

 { firstName: 'Guido', lastName: 'Van Rossum' },

 { firstName: 'Lars', lastName: 'Bak' }

]

When called using the Schwartzian transform approach, the function
was called 7 times

We can easily check that the values that are outputted are sorted according to their
full names. We can also notice a 7 at the end of output – that's the total number of
calls of the getFullName function. Since we have 7 items in the programmers array,
we can conclude that the function was called just once for each object.

We could have instead sorted the programmers array directly, using code such as
the following:

programmers.sort((first, second) => {

 const firstFullName = getFullName(first);

 const secondFullName = getFullName(second);

 return firstFullName.localeCompare(secondFullName);

});

console.log(count);

Basic Types | 43

In this case, for this array, the count of execution of the getFullName function
would have been 28, which is four times as high as our optimized version.

Enums

Often we have some types that have a predefined set of values, and no other value is
valid. For example, there are four and only four cardinal directions (East, West, North,
and South). There are four and only four different suits in a deck of cards. So, how do
we define a variable that should have such a value?

In TypeScript, we can use an enum type to do that. The simplest way to define an
enum would be as follows:

enum Suit {

 Hearts,

 Diamonds,

 Clubs,

 Spades

}

We can then define and use a variable of such type, and TypeScript will help us use it:

let trumpSuit = Suit.Hears;

TypeScript will infer that the type of the trumpSuit variable is Suit and will only
allow us to access those four values. Any attempt to assign something else to the
variable will result in an error:

Figure 1.15: TypeScript inferring the type of trumpSuit

44 | TypeScript Fundamentals

So far, all the types we've encountered were JavaScript types that were augmented
with TypeScript. Unlike that, enums are specific to TypeScript. Under the hood, the
Suit class actually compiles into an object with values like this:

{

 '0': 'Hearts',

 '1': 'Diamonds',

 '2': 'Clubs',

 '3': 'Spades',

 Hearts: 0,

 Diamonds: 1,

 Clubs: 2,

 Spades: 3

}

TypeScript will automatically assign numbers starting with zero to the options
provided and add a reverse mapping as well, so if we have the option, we can get
the value, but if we have the value, we can map to the option as well. We can also
explicitly set the provided numbers as well:

enum Suit {

 Hearts = 10,

 Diamonds = 20,

 Clubs = 30,

 Spades = 40

}

We can also use strings instead of numbers, with syntax like this:

enum Suit {

 Hearts = "hearts",

 Diamonds = "diamonds",

 Clubs = "clubs",

 Spades = "spades"

}

Basic Types | 45

These enums are called string-based enums, and they compile to an object like this:

{

 Hearts: 'hearts',

 Diamonds: 'diamonds',

 Clubs: 'clubs',

 Spades: 'spades'

}

Any and Unknown

So far, we have explained how TypeScript inference works, and how powerful it is.
But sometimes we actually want to have JavaScript's "anything goes" behavior. For
example, what if we genuinely need a variable that will sometimes hold a string and
sometimes hold a number? The following code will issue an error because we're
trying to assign a string to a variable that TypeScript inferred to be a number:

let variable = 3;

if (Math.random()>0.5) {

 variable = "not-a-number";

}

This is how the code will appear on VS Code with the error message:

Figure 1.16: TypeScript inferring the type of variable

46 | TypeScript Fundamentals

What we need to do is somehow suspend the type inference for that specific variable.
To be able to do that, TypeScript provides us with the any type:

let variable: any = 3;

if (Math.random()>0.5) {

 variable = "not-a-number";

}

This type annotation reverts the variable variable to the default JavaScript
behavior, so none of the calls involving that variable will be checked by the compiler.
Additionally, most calls that include a variable of the any type will infer a result of the
same type. This means that the any type is highly contagious, and even if we define it
in a single place in our application, it can propagate to lots of places.

Since using any effectively negates most of TypeScript's benefits, it's best used as
seldom as possible, and only when absolutely necessary. It's a powerful tool to use
the opt-in/opt-out design of TypeScript so that we can gradually upgrade existing
JavaScript code into TypeScript.

One scenario that is sometimes used is a combination of the dynamic nature of any
and the static nature of TypeScript – we can have an array where the elements can
be anything:

const everything: any[] = [1, false, "string"];

Starting from version 3.0, TypeScript also offers another type with dynamic semantics
– the unknown type. While still dynamic, it's much more constricted in what can be
done with it. For example, the following code will compile using any:

const variable: any = getSomeResult(); // a hypothetical function //with
some return value we know nothing about

const str: string = variable; // this works, as any might be a //string,
and "anything goes";
variable.toLowerCase(); // we are allowed to call a method, //and
we'll determine at runtime whether that's possible

Basic Types | 47

On the other hand, the same code with an unknown type annotation results in
the following:

Figure 1.17: TypeScript compiler error message

The unknown type basically flips the assertion and the burden of proof. With any,
the flow is that, since we don't know that it's not a string, we can treat it as a string.
With unknown, we don't know whether it's a string, so we can't treat it as a string. In
order to do anything useful with an unknown, we need to explicitly test its value and
determine our actions based on that:

const variable: unknown = getSomeResult(); // a hypothetical function
with some return value we know nothing about

if (typeof variable === "string") {

 const str: string = variable; // valid, because we tested if the
value inside `variable` actually has a type of string
 variable.toLowerCase();

}

Null and Undefined

One of the specifics of JavaScript is that it has two separate values that signify
that there isn't a value: null and undefined. The difference between the two is
that null has to be specified explicitly – so if something is null, that is because
someone set it to null. Meanwhile, if something has the value undefined usually
it means that the value is not set at all. For example, let's look at a person object
defined with the following:

const person = {

 firstName: "Ada",

 lastName: null

}

48 | TypeScript Fundamentals

The value of the lastName property has been set to null explicitly. On the other
hand, the age property is not set at all. So, if we print them out, we'll see that the
lastName property has a value of null, while the age property has a value
of undefined:

console.log(person.lastName);

console.log(person.age);

We should note that if we have some optional properties in an object, their default
value will be undefined. Similarly, if we have optional parameters in a function, the
default value of the argument will be undefined as well.

Never

There is another "not a value" type that's specific to TypeScript, and that is the
special never type. This type represents a value that never occurs. For example, if
we have a function where the end of the function is not reachable and has no return
statements, its return type will be never. An example of such a function will be
as follows:

function notReturning(): never {

 throw new Error("point of no return");

}

const value = notReturning();

The type of the value variable will be inferred as never. Another situation where
never is useful is if we have a logical condition that cannot be true. As a simple
example, let's look at this code:

const x = true;

if (x) {

 console.log(`x is true: ${x.toString()}`);

}

Basic Types | 49

The conditional statement will always be true, so we will always see the text in
the console. But if we add an else branch to this code, the value of x inside the
branch cannot be true because we're in the else branch, but cannot be anything
else because it was defined as true. So, the actual type is inferred to be never.
Since never does not have any properties or methods, this branch will throw a
compile error:

Figure 1.18: Compiler error from using the never type

Function Types

The last built-in type in JavaScript that we'll take a look at is not really a piece of data
– it's a piece of code. Since functions are first-order objects in JavaScript, they remain
so in TypeScript as well. And just like the others, functions get types as well. The type
of a function is a bit more complicated than the other types. In order to identify it, we
need all the parameters and their types, as well as the return values and their types.
Let's take a look at an add function defined with the following:

const add = function (x: number, y: number) {

 return x + y;

}

To fully describe the type of the function, we need to know that it is a function that
takes a number as the first parameter and a number as the second parameter and
returns a number. In TypeScript, we'll write this as (x: number, y: number)
=> number.

50 | TypeScript Fundamentals

Making Your Own Types
Of course, aside from using the types that are already available in JavaScript, we can
define our own types. We have several options for that. We can use the JavaScript
class specification to declare our own classes, with properties and methods.
A simple class can be defined with the following:

class Person {

 constructor(public firstName: string, public lastName: string, public
age?: number) {
 }

 getFullName() {

 return `${this.firstName} ${this.lastName}`;

 }

}

We can create objects of this class and use methods on them:

const person = new Person("Ada", "Lovelace");

console.log(person.getFullName());

Another way to formalize our complex structures is to use an interface:

interface Person

{

 firstName: string;

 lastName: string;

 age?: string;

}

Unlike classes, which compile to JavaScript classes or constructor functions
(depending on the compilation target), interfaces are a TypeScript-only construct.
When compiling, they are checked statically, and then removed from the
compiled code.

Both classes and interfaces are useful if implementing a class hierarchy, as both
constructs are suitable for extension and inheritance.

Making Your Own Types | 51

Yet another way is to use type aliases, with the type keyword. We can basically put
a name that we will use as a type alias to just about anything available in TypeScript.
For example, if we want to have another name for the primitive number type, for
example, integer, we can always do the following:

type integer = number;

If we want to give a name to a tuple, [string, string, number?], that we use
to store a person, we can alias that with the following:

type Person = [string, string, number?];

We can also use objects and functions in the definition of a type alias:

type Person = {

 firstName: string;

 lastName: string;

 age?: number;

}

type FilterFunction = (person: Person) => boolean;

We will go into more details and intricacies of the class, interface, and type
keywords in Chapter 4, Classes and Objects, Chapter 5, Interfaces and Inheritance, and
Chapter 6, Advance Types, respectively.

Exercise 1.06: Making a Calculator Function

In this exercise, we'll define a calculator function that will take the operands and the
operation as parameters. We will design it so it is easy to extend it with additional
operations and use that behavior to extend it:

Note

The code files for this exercise can be found here: https://packt.link/dKoCZ.

1. Create a new file called calculator.ts.

https://packt.link/dKoCZ

52 | TypeScript Fundamentals

2. In calculator.ts, define an enum with all the operators that we want to
support inside our code:

enum Operator {

 Add = "add",

 Subtract = "subtract",

 Multiply = "multiply",

 Divide = "divide",

}

3. Define an empty (for now) calculator function that will be our main interface.
The function should take three parameters: the two numbers that we want to
operate on, as well as an operator:

const calculator = function (first: number, second: number, op:
Operator) {

}

4. Create a type alias for a function that does a calculation on two numbers. Such a
function will take two numbers as parameters and return a single number:

type Operation = (x: number, y: number) => number;

5. Create an empty array that can hold multiple tuples of the [Operator,
Operation] type. This will be our dictionary, where we store all our methods:

const operations: [Operator, Operation][] = [];

6. Create an add method that satisfies the Operation type (you don't need to
explicitly reference it):

const add = function (first: number, second: number) {

 return first + second;

};

7. Create a tuple of the Operator.Add value and the add function and add it to
the operations array:

operations.push([Operator.Add, add]);

Making Your Own Types | 53

8. Repeat steps 6 and 7 for the subtraction, multiplication, and division functions:

const subtract = function (first: number, second: number) {

 return first - second;

};

operations.push([Operator.Subtract, subtract]);

const multiply = function (first: number, second: number) {

 return first * second;

};

operations.push([Operator.Multiply, multiply]);

const divide = function (first: number, second: number) {

 return first / second;

};

operations.push([Operator.Divide, divide]);

9. Implement the calculator function, using the operations array to find
the correct tuple by the Operator provided, and then using the corresponding
Operation value to do the calculation:

const calculator = function (first: number, second: number, op:
Operator) {
 const tuple = operations.find(tpl => tpl[0] === op);

 const operation = tuple[1];

 const result = operation(first, second);

 return result;

}

Note that, as long as a function has the required type, that is, it takes two
numbers and outputs a number, we can use it as an operation.

10. Let's take the calculator for a test run. Write some code that will call the
calculator function with different arguments:

console.log(calculator(4, 6, Operator.Add));

console.log(calculator(13, 3, Operator.Subtract));

console.log(calculator(2, 5, Operator.Multiply));

console.log(calculator(70, 7, Operator.Divide));

54 | TypeScript Fundamentals

11. Save the file and run the following command in the folder:

tsc calculator.ts

12. Verify that the compilation ended successfully and that there is a calculator.
js file generated in the same folder. Execute it in the node environment with
the following command:

node calculator.js

You will see the output looks as follows:

10

10

10

10

13. Now, let's try to extend our calculator by adding a modulo operation. First, we
need to add that option to the Operator enum:

enum Operator {

 Add = "add",

 Subtract = "subtract",

 Multiply = "multiply",

 Divide = "divide",

 Modulo = "modulo"

}

14. Add a function called modulo of the Operation type, and add a corresponding
tuple to the operations array:

const modulo = function (first: number, second: number) {

 return first % second;

};

operations.push([Operator.Modulo, modulo]);

15. At the end of the file, add a call to the calculator function that uses the
Modulo operator:

console.log(calculator(14, 3, Operator.Modulo));

Making Your Own Types | 55

16. Save and compile the file and run the resulting JavaScript with the
following command:

node calculator.js

You will see an output that looks as follows:

10

10

10

10

2

Note that when we extended our calculator with the modulo function, we did not
change the calculator function at all. In this exercise, we saw how we can use the
tuples, arrays, and function types to effectively design an extensible system.

Activity 1.01: Creating a Library for Working with Strings

Your task is to create a series of simple functions that will help you do some
common operations on strings. Some of the operations are already supported in the
standard JavaScript library, but you will use them as a convenient learning exercise,
both of JavaScript internals and TypeScript as a language. Our library will have the
following functions:

1. toTitleCase: This will process a string and will capitalize the first letter of
each word but will make all the other letters lowercase.

Test cases for this function are as follows:

"war AND peace" => "War And Peace"

"Catcher in the Rye" => "Catcher In The Rye"

"tO kILL A mOCKINGBIRD" => "To Kill A MockingBird"

2. countWords: This will count the number of separate words within a string.
Words are delimited by spaces, dashes (-), or underscores (_).

Test cases for this function are as follows:

"War and Peace" => 3

"catcher-in-the-rye" => 4

"for_whom the-bell-tolls" => 5

56 | TypeScript Fundamentals

3. toWords: This will return all the words that are within a string. Words are
delimited by spaces, dashes (-), or underscores (_).

Test cases for this function are as follows:

"War and Peace" => [War, and, peace]

"catcher-in-the-rye" => [catcher, in, the, rye]

"for_whom the-bell-tolls"=> [for, whom, the, bell, tolls]

4. repeat: This will take a string and a number and return that same string
repeated that number of times.

Test cases for this function are as follows:

"War", 3 => "WarWarWar"

"rye", 1 => "rye"

"bell", 0 => ""

5. isAlpha: This will return true if the string only has alpha characters
(that is, letters). Test cases for this function are as follows:

"War and Peace" => false

"Atonement" => true

"1Q84" => false

6. isBlank: This will return true if the string is blank, that is, consists only of
whitespace characters.

Test cases for this function are as follows:

"War and Peace" => false

" " => true

"" => true

When writing the functions, make sure to think of the types of the parameters
and the types of the return values.

Note

The code files for this activity can be found here: https://packt.link/TOZuy.

Here are some steps to help you create the preceding functions (note that there
are multiple ways to implement each of the functions, so treat these steps
as suggestions):

https://packt.link/TOZuy

Making Your Own Types | 57

1. Creating the toTitleCase function: In order to change each word, we'll need
first to get all the words. You can use the split function to make a single string
into an array of words. Next, we'll need to slice off the first letter from the rest
of the word. We can use the toLowerCase and toUpperCase methods to
make something lower- and uppercase, respectively. After we get all the words
properly cased, we can use the join array method to make an array of strings
into a single large string.

2. Creating the countWords function: In order to get the words, we can split
the original string on any occurrence of any of the three delimiters (" ", "_",
and "-"). Fortunately, the split function can take a regular expression as a
parameter, which we can use to our benefit. Once we have the words in an array,
we just need to count the elements.

3. Creating the towards function: This method can use the same approach as the
preceding one. Instead of counting the words, we'll just need to return them.
Take note of the return type of this method.

4. Creating the repeat function: Create an array with the required length (using
the Array constructor), and set each element to the input value (using the
array's fill method). After that, you can use the join method of the array to
join the values into a single long string.

5. Creating the isAlpha function: We can design a regular expression that will
test this, but we can also split the string into single characters, using the string
split method. Once we have the character array, we can use the map function
to transform all the characters to lowercase. We can then use the filter method
to return only those characters that are not between "a" and "z". If we don't
have such characters, then the input only has letters, so we should return true.
Otherwise, we should return false.

6. Creating the isBlank function: One way to create such a function is to
repeatedly test whether the first character is empty, and if it is, to remove
it (a while loop works best for this). That loop will break either on the first
non-blank characters or when it runs out of the first elements, that is, when
the input is empty. In the first case, the string is not blank, so we should return
false; otherwise, we should return true.

Note

The solution to this activity can be found via this link.

58 | TypeScript Fundamentals

Summary
In this chapter, we looked at the world before TypeScript and described the problems
and issues that TypeScript was actually designed to solve. We had a brief overview
of how TypeScript operates under the hood, got ourselves introduced to the tsc
compiler, and learned how we can control it using the tsconfig.json file.

We familiarized ourselves with the differences between TypeScript and JavaScript
and saw how TypeScript infers the types from the values that we provide. We learned
how different primitive types are treated in TypeScript, and finally, we learned how to
create our own types to structure the building blocks of a large-scale, enterprise-level
web application. Equipped with the fundamentals, you are now in a position to delve
further into TypeScript, with the next chapter teaching you about declaration files.

Overview

This chapter gets you started with declaration files in TypeScript. You will
learn how to work with declaration files, including how to build your own
declaration files from scratch, and then work with types in external libraries.
By the end of this chapter, you will be able to create declaration files from
scratch, implement common development patterns for creating declaration
files, and produce type checking when working with third-party NPM
code libraries.

Declaration Files

2

62 | Declaration Files

Introduction
In this chapter, you will learn about TypeScript declaration files. Declaration files give
you the ability to give TypeScript more information about how a function or class
is structured.

Why is it important to understand how declaration files work? Technically, declaration
files speak directly to the core motivations for why TypeScript is becoming so popular.
One of the common rationales for using TypeScript is because it guides developers
through the application process. Let's walk through a real-world example as a
case study.

In pure JavaScript, if we start working with a code library that we've never used
before that formats dates, such as Moment JS, we would have to start by looking
through the documentation in order to know what type of data we can pass to the
Moment JS functions. When working with a new library, it is tedious work to figure out
requirements, such as how many function arguments are required for each function
and what data type each argument needs to be.

With the declaration files, however, TypeScript informs the text editor of the
requirements for every function that a library has. So, instead of having to rely solely
on documentation and Google searches, the text editor itself informs the developer
how to work with each function. For example, the text editor, with the help of
TypeScript, would inform us that the Moment JS format function takes in zero to one
arguments, and the optional argument needs to be a string. And declaration files
make all of this possible.

Declaration Files
Anytime we're asked to write additional boilerplate code, our first question is: why
is it important to do this? With that in mind, before we walk through creating and
managing declaration files, let's first analyze the role of declaration files in the
development process.

The entire reason why we use TypeScript in the first place is to give our applications
a specified structure based on types. Declaration files extend this functionality by
allowing us to define the shape of our programs.

Declaration Files | 63

In this section, we will walk through two ways to work with declaration files. The first
approach will be to create our own declaration files from scratch. This is a great place
to start since it provides insight into how the declaration process works. In the second
part, we will see how we can integrate types into third-party NPM libraries.

Note

Declaration files are not a new concept in the programming world. The
same principle has been used for decades in older programming languages
such as Java, C, and C++.

Before we get into this chapter's example project, let's look at the core elements that
comprise a declaration file in TypeScript. Consider the following code, which assigns a
string value to a variable:

firstName = "Kristine";

The preceding code in TypeScript will generate a compiler warning that says Cannot
find name 'firstName', which can be seen in the following screenshot:

Figure 2.1: Compiler error when TypeScript cannot find a variable declaration

This error is shown because whenever we attempt to assign a value to a variable,
TypeScript looks for where a variable name is defined. We can fix this by utilizing the
declare keyword. The following code will correct the error that we encountered in
the previous case:

declare let firstName: string;

firstName = "Kristine";

64 | Declaration Files

As you can see in the following screenshot, the compiler warning disappeared with
the use of the declare keyword:

Figure 2.2: Example of a variable being defined in TypeScript

Now, that may not seem like a big deal, because we could accomplish the same goal
by simply defining a let variable, such as the following:

let firstName: string;

firstName = "Kristine"

The preceding code would not generate an error when viewed in the Visual Studio
Code editor.

So, what is the point of using declare? As we build out complex modules, the
declare process allows us to describe the complete shape of our modules in a way
that cannot be done by simply defining a variable. Now that you know the role of
declaration files along with the basic syntax, let's walk through the full workflow of
creating a declaration file from scratch in the following exercise.

Exercise 2.01: Creating a Declaration File from Scratch

In this exercise, we'll create a declaration file from scratch. We'll declare file
conventions, import, and then use declared files. Consider that you are developing
a web app that requires users to register themselves with credentials such as email,
user roles, and passwords. The data types of these credentials will be stated in the
declaration file that we'll be creating. A user won't be allowed to log in if they fail to
enter the correct credentials.

Note

The code files for this exercise can be found here: https://packt.link/bBzat.

https://packt.link/bBzat

Declaration Files | 65

Perform the following steps to implement this exercise:

1. Open the Visual Studio Code editor.

2. Create a new directory and then create a file named user.ts.

3. Start the TypeScript compiler and have it watch for changes to the file with the
following terminal compile command:

tsc user.ts ––watch

The following screenshot shows how the command appears inside the terminal:

Figure 2.3: Running the TypeScript compiler with the watch flag

It's fine to leave this file empty for now. We'll start building out our
implementation shortly. Now let's create our declaration file.

66 | Declaration Files

4. Create a directory called types/ at the root of our program and then create a
file inside it called AuthTypes.d.ts.

Our project's directory should now look like this:

Figure 2.4: AuthTypes file structure

Note

Traditionally, declaration files are kept in their own directory called types/
and are then imported by the modules that they are defining. It's also the
standard convention to use the file extension of .d.ts instead of .ts for
your declaration files.

5. Within the new declaration file, define the shape of our AuthTypes module.
Use the declare keyword at the top of the file. This tells TypeScript that we are
about to describe how the AuthTypes module should be structured:

declare module "AuthTypes" {

 export interface User {

 email: string;

 roles: Array<string>;

 }

}

Declaration Files | 67

In the preceding code, another bit of syntax that might be different than what
you're used to writing is that we wrap the module name in quotation marks.
When we implement the program, you'll see that if we remove the quotation
marks, we won't be able to import the module. Inside the module, we can
place any number of exports that we want the module to have. One of the
most important concepts to keep in mind is that declaration files do not have
any implementation code; they simply describe the types and structure for
the elements used in the module. The following screenshot gives a visual
representation of the code:

Figure 2.5: AuthTypes interface

The compiler messages suggest that the import should happen successfully as
there have not been any errors up to this point.

In this step, we're exporting a user interface that defines two data points:
email and roles. As far as the data types are concerned, the email attribute
needs to be a string, and roles needs to be an array filled with strings. Such
type definitions will ensure that anyone using this module will be informed
immediately if they attempt to use the incorrect data structure.

Now that we have defined the AuthTypes module, we need to import it into
our TypeScript file so that we can use it. We're going to use the reference import
process to bring the file into our program.

6. Go to the user.ts file and add the following two lines of code:

/// <reference path = "./types/AuthTypes.d.ts" />

import auth = require("AuthTypes");

68 | Declaration Files

The code in the editor will look something like this:

Figure 2.6: Importing a declaration file

The first line in the preceding code will make AuthTypes.d.ts available to our
program, and the second line imports the module itself. Obviously, you can use
any variable name for the import statement that you prefer. In this code, we're
importing the AuthTypes module and storing it in the auth keyword.

With our module imported, we can now start building the implementation for
our program. We'll start out by defining a variable and assigning it to our user
interface type that we defined in the declaration files.

7. Add the following code to the user.ts file:

let jon: auth.User;

The updated code of user.ts file will look something like this:

/// <reference path = "./types/AuthTypes.d.ts" />

import auth = require("AuthTypes");

let jon: auth.User;

Declaration Files | 69

What we've done here is quite impressive. We've essentially created our own
type/interface in a separate file, imported it, and told the TypeScript compiler
that our new variable is going to be of the User type.

8. Add the actual values of email and roles for the jon variable with the help of
the following code:

jon = {

 email: "jon@snow.com",

 roles: ["admin"]

};

With the required shape in place, the program compiles properly, and you can
perform any tasks that you need to do.

9. Create another User and see how we can work with optional attributes. Add the
following code to add details of the user alice:

let alice: auth.User;

alice = {

 email: "alice@snow.com",

 roles: ["super_admin"]

};

Now, let's imagine that we sometimes keep track of how a user found our
application. Not all users will have this attribute though, so we'll need to make it
optional without breaking the other user accounts. You can mark an attribute as
optional by adding a question mark before the colon.

10. Add a source attribute to the declaration file:

declare module "AuthTypes" {

 export interface User {

 email: string;

 roles: Array<string>;

 source?: string;

 }

}

70 | Declaration Files

11. Update our alice user with a source value of facebook:

/// <reference path = "./types/AuthTypes.d.ts" />

import auth = require("AuthTypes");

let jon: auth.User;

jon = {

 email: "jon@snow.com",

 roles: ["admin"]

};

let alice: auth.User;

alice = {

 email: "alice@snow.com",

 roles: ["super_admin"],

 source: "facebook"

}

Notice that the jon variable still works perfectly fine, even without the source
value. This helps us to build flexible interfaces for our programs that define both
optional and required data points.

12. Open the terminal and run the following command to generate a JavaScript file:

tsc user.ts

Let's now look at the generated user.js file, which can be seen in the
following screenshot:

Figure 2.7: Declaration file rules not added to the generated JavaScript code

Declaration Files | 71

Well, that's interesting. There is literally not a single mention of the declaration
file in the generated JavaScript code. This brings up a very important piece of
knowledge to know when it comes to declaration files and TypeScript in general:
declaration files are used solely for the benefit of the developer and are only
utilized by the IDE.

Declaration files are completely bypassed when it comes to what is rendered in the
program. And with this in mind, hopefully the goal of declaration files is becoming
clearer. The better your declaration files are, the easier it will be for the IDE to
understand your program and for yourself and other developers to work with
your code.

Exceptions

Let's see what happens when we don't follow the rules of our interface. Remember
in the previous exercise that our interface required two data elements (email
and roles) and that they need to be of the string and Array<string> types.
So, watch what happens when we don't implement the proper data type with the
following code:

jon = {

 email: 123

}

This will generate the following compiler error, as shown in the following screenshot:

Figure 2.8: TypeScript showing the required data types for an object

72 | Declaration Files

That is incredibly helpful. Imagine that you are working with a library that you've
never used before. If you were using vanilla JavaScript, this implementation would
silently fail and would force you to dig through the library's source code to see what
structure it required.

This compiler error makes sense, and in a real-life application, such as a React or
an Angular app, the application wouldn't even load until the issue was fixed. If we
update the data structure to match the declaration file for AuthTypes with the
following code:

jon = {

 email: "jon@snow.com"

}

We can see that the compiler will move the error message up to the jon variable
name. If you hover over it, or look at the terminal output, you'll see the error shown
in the following screenshot:

Figure 2.9: TypeScript showing the required attributes for an object

This is an incredibly useful functionality. If you're new to development, this may not
seem like a very big deal. However, this type of information is the exact reason why
TypeScript continues to grow in popularity. Error messages such as this instantly
provide the information that we need in order to fix the bug and work with the
program. In the preceding screenshot, the message is telling us that the program
won't compile as we are missing a required value, namely, roles.

Third-Party Code Libraries | 73

Now that we have built out our own declaration file from scratch, it's time to move on
and see how declaration files are utilized by other libraries.

Third-Party Code Libraries
Depending on the types of applications that you build, you may never need to build
your own declaration files. However, if you're using TypeScript and working with
third-party modules, you will need to understand how declaration files work because
you will then be able to work seamlessly with external libraries.

DefinitelyTyped

Let's jump back in time for a moment. When TypeScript was originally developed,
there was quite a bit of excitement around the idea of integrating types into
JavaScript applications. However, developers began to get frustrated, because even
though they were building their programs with types, every time that they imported
an external library, such as lodash, they were forced to write code with no type
signatures and little to no IDE guidance.

Essentially, this meant that each time we were to call a function from an external
library, we didn't have a high level of assurance that we were working with it properly.

Thankfully, the open source community had the answer, and the DefinitelyTyped
library was created. DefinitelyTyped is a very large repository that contains literally
thousands of declaration files for JavaScript code libraries. This means that libraries
such as react, lodash, and pretty much every other popular library has a full set of
declaration files that we can use in our TypeScript programs.

Note

For more information on DefinitelyTyped, visit https://definitelytyped.org.

https://definitelytyped.org

74 | Declaration Files

Analyzing an External Declaration File

Before we learn how to import and use types with external libraries, let's peek into
what they look like:

Figure 2.10: Example of how DefinitelyTyped uses declaration files

In the preceding screenshot, if you look at the lodash declaration file for the array
data structure, you'll see that a single declaration file is over 2,000 lines long. That can
be a little intimidating to look at, so let's try to simplify it.

Note

lodash is a utility library that provides functionality for working with
objects, strings, arrays, and suchlike. The lodash library's declaration file
for the array data structure, as shown in the preceding screenshot, can be
found here: https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/
types/lodash/common/array.d.ts.

You'll be pleased to know that the elements in the preceding declaration file are
exactly what we built out in Exercise 1.01: Creating a Declaration File from Scratch. It
starts by declaring a module instance, and from that point, it lists out interfaces for
each of the elements that utilize the array data structure. In fact, if you dissect the
code, you'll see that lodash provides three interfaces for each of the functions in
the library. You don't have to know what these do; however, it is helpful to realize
that you can provide as many interfaces as needed when you're building your own
code libraries.

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/lodash/common/array.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/lodash/common/array.d.ts

Third-Party Code Libraries | 75

Let's now look at the interface for the last function:

Figure 2.11: How lodash implements interfaces

This is a good function to look at, because we'll use it when we get to the example
for this section. You can see that the majority of the interface is actually a comment.
If you've never seen this syntax before, it is using JSDoc syntax. This is very helpful,
because IDEs such as Visual Studio Code will pull the comment, parameters, and
return type directly into the IntelliSense interface. This means that when we start
typing the last function when working with lodash, the IDE will automatically pull
in the comment data so we can easily read how to use the function.

After that, the declaration is pretty basic. It simply describes the shape of the last
function, specifically, that it takes a list of values as the argument and then returns
either T or undefined. Don't worry about all the references to T; you'll learn about
what this represents in Chapter 8, Generics. For now, just know that it means that it is
returning a value.

Following the same pattern from when we created the declaration file from scratch,
in the next section, let's create a new TypeScript project and walk through a practical
example of why types are needed.

76 | Declaration Files

Exercise 2.02: Creating Types with External Libraries

In this exercise, we'll install types and integrate our types with external libraries.
We will also be exploring a scenario wherein we'll check how the function behaves
when the wrong type of parameter is passed to it. You'll need to start with an empty
directory for this exercise.

Note

The code files for this exercise can be found here: https://packt.link/k7Wbt.

Perform the following steps to implement this exercise:

1. Open the Visual Studio Code editor.

2. Create an empty directory on your computer and run the following command to
create a new NPM project:

npm init -y

The preceding code will generate a package.json file.

3. To install the Lodash library, open the terminal and type the following command:

npm i lodash

The preceding command installs the Lodash library. The package.json
file should now look something like this, with lodash installed in the
dependencies list:

https://packt.link/k7Wbt

Third-Party Code Libraries | 77

Figure 2.12: The generated package.json file

4. Create a file in that directory named lodash_examples.ts, start the
TypeScript compiler, and have it watch for changes. Inside of the new .ts file,
add the following code:

import _ = require("lodash");

const nums = [1, 2, 3];

console.log(_.last(nums));

5. Run the preceding program in the terminal by writing the following commands:

tsc lodash_examples.ts

node lodash_examples.js

78 | Declaration Files

The console generates an output of 3, as you can see in the
following screenshot:

Figure 2.13: Running the generated lodash_example.js program

6. Create another variable named number and assign it the value 10. We'll then
pass this number as an argument to the Lodash library's _.last() function.
Write the following code to do this:

import _ = require("lodash");

//const nums = [1, 2, 3];

//console.log(_.last(nums));

const number = 10;

console.log(_.last(number));

Since we've looked at the declaration file, we know that the last function expects
an array or some type of list. However, for now, let's pretend that we don't
have that information, and this is the first time that we're working with the
Lodash library.

Note

The Lodash library's last function also works with strings because it
views the string of characters like a collection of characters. For example,
_.last("hey") will return "y" since it's the last character in the string.

7. Run the preceding program in the terminal by writing the following commands:

tsc lodash_examples.ts

node lodash_examples.js

Third-Party Code Libraries | 79

The following output is generated when the preceding commands are executed:

Figure 2.14: What happens when the wrong argument is passed to the last function

In such a small program, this may seem like a trivial issue. However, in a large
system, getting an undefined value while expecting an actual value can be time-
consuming, as we have to spend more time on debugging.

In order to fix this issue, let's leverage the DefinitelyTyped repository and bring
in the lodash types. If you hover over the import statement at the top of the
file, you'll even see the following warning and recommendation, as shown in the
following screenshot:

Figure 2.15: TypeScript recommending to install Lodash types from DefinitelyTyped

That's quite helpful. The warning itself is showing us how we can install the types
for the library.

8. Follow the recommendation and run the following command in the terminal to
install lodash types:

npm install @types/lodash

Note

Any time that you see an install command that starts with @types/,
that means that NPM is going to pull from the DefinitelyTyped repository.

80 | Declaration Files

If you run that command, the warning in the import statement should go away
automatically. But even more importantly, you should now see that the IDE is
now complaining about the line of code where we're trying to pass a number to
the last function. If you hover over the word number, you should see the error
shown in the following screenshot:

Figure 2.16: IntelliSense revealing the correct type to use with the last function

From the preceding screenshot, it is clear that the last function won't take any
argument of the number type. It accepts either an array or a list as an argument.
So, let's imagine that we're building a real-world application, and we try to use the
last function. If we were using vanilla JavaScript, we wouldn't realize our error until
we, or even a user, encountered the error while running the program. However, by
leveraging TypeScript and DefinitelyTyped, the program won't even compile if we
attempt to use a function in the incorrect manner.

Development Workflow with DefinitelyTyped

Now that you've seen how to install and work with types, we will walk through a full
development workflow so that you can observe the benefits of working with types.
Without the integration of types into external libraries, we are forced to either have
prior knowledge of the library or dig through the documentation to discover the
proper usage.

However, with types, we're going to see how much more streamlined the process is
when it comes to working with libraries such as lodash. Let's solve an exercise in the
next section to get a proper understanding of this.

Third-Party Code Libraries | 81

Exercise 2.03: Creating a Baseball Lineup Card Application

In this exercise, we'll create a baseball lineup application, wherein we have an array
of player names that we'll be retrieving from an API, and then we have a constant
variable in the application called lineupOrder. Our lineup card application needs
to pair the names from the API with lineupOrder:

Note

The code files for this exercise can be found here: https://packt.link/01spI.

1. Open the Visual Studio Code editor.

2. Create a file named lodash_newexamples.ts and add the following code,
wherein we have an array variable, playerNames, and a list, lineupOrder:

import _ = require("lodash");

const playerNames = [

 "Springer",

 "Bregman",

 "Altuve",

 "Correa",

 "Brantley",

 "White",

 "Gonzalez",

 "Kemp",

 "Reddick"

];

const lineupOrder = [1, 2, 3, 4, 5, 6, 7, 8, 9];

This is a perfect situation for using the zip function from the Lodash library.
Let's imagine that we've heard about the zip function, but aren't quite aware of
how to use it yet. Start by writing the following code in the same file:

_.zip()

https://packt.link/01spI

82 | Declaration Files

3. Once you've typed the preceding code, place the cursor in between the
parentheses. You'll get some guidance on how to use the function straight from
DefinitelyTyped, as shown in the following screenshot:

Figure 2.17: IntelliSense guidance on how to use the zip function in lodash

Note

From the preceding screenshot, we can see that the zip function takes
two arguments. Both arguments need to be ArrayLike, which means
they need to function as a type of collection. Also, the function groups the
elements together and returns the grouped collection. Thus, without having
to dig through the lodash documentation, we were able to leverage the
type definition as we were building the program. It gives us the guidance we
need while working with the function.

Let's now test it out. We know that the zip function takes in two arrays. So, let's
provide it with the playerNames and lineupOrder arrays.

4. Add the following code to provide the zip function with two arrays,
playerNames and lineupOrder:

console.log(_.zip(lineupOrder, playerNames));

If you run the preceding code, you'll see that the zip function does exactly what
it said it would do. It groups the elements and returns the exact data structure
that we needed. The rendered lineup card would look something like that shown
in the following screenshot:

Third-Party Code Libraries | 83

Figure 2.18: Running the zip function properly from lodash

In completing this process, you can see how DefinitelyTyped allows you to extend
types directly into third-party libraries so that you can get type guidance in
your programs.

Activity 2.01: Building a Heat Map Declaration File

In this activity, you will build a TypeScript application named heat map log
system for tracking baseball pitch data and ensuring data integrity. You will utilize
a TypeScript declaration file to build the type system for the program. From that
point, you will import the Lodash library and will add type checking to the program by
implementing type definitions from DefinitelyTyped.

The steps are as follows:

1. Visit the following GitHub repository and download the activity project containing
the specs and configuration elements: https://packt.link/vnj1R.

2. Create a file called heat_map_data.ts.

3. Run the TypeScript compiler on the file and watch for changes.

4. Create a declaration file and define a module called HeatMapTypes and export
the interface named Pitcher.

5. Define three attributes for the Pitcher module: batterHotZones,
pitcherHotZones, and coordinateMap.

6. The data structures should be the same for all three attributes,
Array<Array<number>>, but coordinateMap should be optional.

84 | Declaration Files

7. Then, import the declaration files into the heat_map_data.ts file. Then,
create and export a let variable called data and assign it to the Pitcher type.

8. Add values that adhere to the declaration rules, ensuring that one of the nested
arrays is identical in the batterHotZones and pitcherHotZones attributes.

9. Create a new function called findMatch that takes in both the
batterHotZones and pitcherHotZones arrays and utilize the lodash
function, intersectionWith, to return the identical nested array. You will
need to import the Lodash library, which was installed when you initially ran
npm install. Finally, store the value of findMatch in the coordinateMap
attribute that was defined in the declaration file.

The expected output of this activity will be a nested array that looks similar
to this:

[[10.2, -5], [3, 2]]

Note

The solution to this activity can be found via this link.

Summary
In this chapter, we've walked through how to utilize declaration files in TypeScript.
We've analyzed how declaration files can assist the IDE in guiding how programs
should be structured. We've seen examples of structuring the declaration files.
Importing declaration files into TypeScript files assists in the development life cycle.
We learned to assign objects to custom types that were defined in the declaration
files. It injects typed guidance into the IDE's IntelliSense process. We also learned
about DefinitelyTyped and how it can be leveraged to layer on types for third-party
libraries and work with them like typed programs.

With all this knowledge of declaration files, in the next chapter, we'll be taking a
deep dive into working with functions in TypeScript. We'll be defining a function
using types, building a suite of functions in a module, building a class of functions to
perform a specific task, and exploring unit testing.

Overview

Functions are a basic building block of any application. This chapter teaches
you how to unleash the power of TypeScript using versatile functions that
have capabilities you may not find in other programming languages. We
will talk about the this key and look at function expressions, member
functions, and arrow functions. This chapter also discusses function
arguments, including rest and default parameters. We will also look at the
import and export keywords.

This chapter also teaches you how to write tests that pass different
combinations of arguments and compare the expected output with the
actual output. We will close the chapter by designing a prototype application
and completing it with unit tests.

Functions

3

88 | Functions

Introduction
So far, we've learned some of the basics of TypeScript, how to set up a project,
and the use of definition files. Now we will delve into the topic of functions, which
are going to be the most important tools in your arsenal. Even object-oriented
programming paradigms depend heavily on functions as a basic building block of
business logic.

Functions, sometimes called routines or methods, are part of every high-level
programming language. The ability to reuse segments of code is critical, but functions
provide an even more important role than that in that they can be given different
arguments, or variables, to act against and produce different results. Writing good
functions is the difference between a good program and a great one. You first need
to start by learning the syntax before thinking about crafting a good function by
considering what arguments it should take and what it should produce.

In this chapter, we will cover three different ways to create functions. We will describe
the pitfalls and the proper use of the this keyword. We will look at powerful
programming techniques, including currying, functional programming, and the use
of closures. We will explore the TypeScript module system and how to share code
between modules by means of the import and export keywords. We'll see how
functions can be organized into classes and how to refactor JavaScript code into
TypeScript. Then we will learn how to use the popular Jest testing framework.

Putting these skills to use, we will design, build, and test a prototype flight
booking system.

Functions in TypeScript
A simple definition of function is a set of statements that can be invoked; however,
the use and conventions of functions cannot be summarized so easily. Functions in
TypeScript have greater utility than in some other languages. In addition to being
invoked as normal, functions can also be given as arguments to other functions and
can be returned from functions. Functions are actually a special kind of object that
can be invoked. This means that in addition to parameters, functions can actually
have properties and methods of their own, though this is rarely done.

Only the smallest of programs will ever avoid making heavy use of functions.
Most programs will be made up of many .ts files. Those files will typically export
functions, classes, or objects. Other parts of the program will interact with the
exported code, typically by calling functions. Functions create patterns for reusing
your application logic and allow you to write DRY (don't repeat yourself) code.

Functions in TypeScript | 89

Before diving into functions, let's perform an exercise to get a glimpse of how
functions in general are useful. Don't worry if you do not understand some of the
function-related syntax in the exercise. You will be studying all of this later in the
chapter. The purpose of the following exercise is only to help you understand the
importance of functions.

Exercise 3.01: Getting Started with Functions in TypeScript

To give an example of the usefulness of functions, you will create a program that
calculates an average. This exercise will first create a program that does not make use
of any functions. Then, the same task of calculating the average will be performed
using functions.

Let's get started:

Note

The code file for this exercise can be found at https://packt.link/ZHrsh.

1. Open VS Code and create a new file called Exericse01.ts. Write the following
code that makes no use of functions other than the console.log statement:

const values = [8, 42, 99, 161];

let total = 0;

for(let i = 0; i < values.length; i++) {

 total += values[i];

}

const average = total/values.length;

console.log(average);

2. Run the file by executing npx ts-node Exercise 01.ts on the terminal.
You will get the following output:

77.5.

3. Now, rewrite the same code using built-in functions and a function of our
own, calcAverage:

const calcAverage = (values: number[]): number =>
 (values.reduce((prev, curr) =>
 prev + curr, 0) / values.length);

90 | Functions

const values = [8, 42, 99, 161];

const average = calcAverage(values);

console.log(average);

4. Run the file and observe the output:

77.5.

The output is the same, but this code is more concise and more expressive. We
have written our own function, but we also make use of the built-in array.
reduce function. Understanding how functions work will both enable us to
write our own useful functions and make use of powerful built-in functions.

Let's continue to build upon this exercise. Instead of just getting the average, consider
a program to calculate a standard deviation. This can be written as procedural code
without functions:

Example01_std_dev.ts

1 const values = [8, 42, 99, 161];
2 let total = 0;
3 for (let i = 0; i < values.length; i++) {
4 total += values[i];
5 }
6 const average = total / values.length;
7 const squareDiffs = [];
8 for (let i = 0; i < values.length; i++) {
9 const diff = values[i] - average;
10 squareDiffs.push(diff * diff)
11 }
12 total = 0;
13 for (let i = 0; i < squareDiffs.length; i++) {
14 total += squareDiffs[i];
15 }
16 const standardDeviation = Math.sqrt(total / squareDiffs.length);
17 console.log(standardDeviation);

Link to the preceding example: https://packt.link/YdTYD

https://packt.link/YdTYD

Functions in TypeScript | 91

You will get the following output once you run the file:

58.148516748065035

While we have the correct output, this code is very inefficient as the details of
implementation (summing an array in a loop, then dividing by its length) are
repeated. Additionally, since functions aren't used, the code would be difficult to
debug as individual parts of the program can't be run in isolation. If we have an
incorrect result, the entire program must be run repeatedly with minor corrections
until we are sure of the correct output. This will not scale to programs that contain
thousands or millions of lines of code, as many major web applications do. Now
consider the following program:

Example02_std_dev.ts

1 const calcAverage = (values: number[]): number =>
2 (values.reduce((prev, curr) => prev + curr, 0) / values.length);
3 const calcStandardDeviation = (values: number[]): number => {
4 const average = calcAverage(values);
5 const squareDiffs = values.map((value: number): number => {
6 const diff = value - average;
7 return diff * diff;
8 });
9 return Math.sqrt(calcAverage(squareDiffs));
10 }
11 const values = [8, 42, 99, 161];
12 console.log(calcStandardDeviation(values));

Link to the preceding example: https://packt.link/smsxT

The output is as follows:

58.148516748065035

Again, the output is correct and we've reused calcAverage twice in this program,
proving the value of writing that function. Even if all the functions and syntax don't
make sense yet, most programmers will agree that more concise and expressive code
is preferable to large blocks of code that offer no patterns of reuse.

https://packt.link/smsxT

92 | Functions

The function Keyword

The simplest way to create a function is with a function statement using the
function keyword. The keyword precedes the function name, after which a
parameter list is given, and the function body is enclosed with braces. The parameter
list for a function is always wrapped in parentheses, even if there are no parameters.
The parentheses are always required in TypeScript, unlike some other languages,
such as Ruby:

function myFunction() {

 console.log('Hello world!');

}

A function that completes successfully will always return either one or zero values. If
nothing is returned, the void identifier can be used to show nothing was returned.
A function cannot return more than one value, but many developers get around this
limitation by returning an array or object that itself contains multiple values that
can be recast into individual variables. Functions can return any of the built-in types
in TypeScript or types that we write. Functions can also return complex or inline
types (described in later chapters). If the type a function might return can't easily be
inferred by the body of the function and a return statement, it is a good idea to add
a return type to the function. That looks like this. The return type of void indicates
that this function doesn't return anything:

function myFunction(): void {

 console.log('Hello world!');

}

Function Parameters

A parameter is a placeholder for a value that is passed into the function. Any
number of parameters can be specified for a function. As we are writing TypeScript,
parameters should have their types annotated. Let's change our function so that it
requires a parameter and returns something:

Example03.ts

1 function myFunction(name: string): string {
2 return `Hello ${name}!`;
3 }

Functions in TypeScript | 93

In contrast to the previous example, this function expects a single parameter
identified by name, the type of which has been defined as string – (name:
string). The function body has changed and now uses a string template to return
our greeting message as a template string. We could invoke the function like this:
4 const message = myFunction('world');
5 console.log(message);

Link to the preceding example: https://packt.link/ITlEU

You will get the following output once you run the file:

Hello world!

This code invokes myFunction with an argument of 'world' and assigns the
result of the function call to a new constant, message. The console object is
a built-in object that exposes a log function (sometimes called a method as an
object member) that will print the given string to the console. Since myFunction
concatenates the given parameter to a template string, Hello world! is printed to
the console.

Of course, it isn't necessary to store the function result in a constant before logging it
out. We could simply write the following:

console.log(myFunction('world'));

This code will invoke the function and log its result to the console, as shown in the
following output:

Hello world!

Many of the examples in this chapter will take this form because this is a very simple
way to validate the output of a function. More sophisticated applications use unit
tests and more robust logging solutions to validate functions, and so the reader is
cautioned against filling applications with console.log statements.

Argument versus Parameter

Many developers use the terms argument and parameter interchangeably; however,
the term argument refers to a value passed to a function, while parameter refers
to the placeholder in the function. In the case of myFunction('world');, the
'world' string is an argument and not a parameter. The name placeholder with an
assigned type in the function declaration is a parameter.

https://packt.link/ITlEU

94 | Functions

Optional Parameters

One important difference from JavaScript is that TypeScript function parameters
are only optional if we postfix them with ?. The function in the previous example,
myFunction, expects an argument. Consider the case where we don't specify
any arguments:

const message = myFunction();

This code will give us a compilation error: Expected 1 arguments, but got
0. That means the code won't even compile, much less run. Likewise, consider the
following snippet, where we provide an argument of the wrong type:

const message = myFunction(5);

Now, the error message reads: Argument of type '5' is not assignable
to parameter of type 'string'.

It's interesting that this error message has given the narrowest possible type for the
value we tried to pass. Instead of saying argument of type 'number', the
compiler sees the type as simply the number 5. This gives us a hint that types can be
far narrower than the primitive number type.

TypeScript automatically prevents us from making mistakes such as this by enforcing
types. But what if we actually do want to make the parameter optional? One option is,
as previously mentioned, to postfix the parameter with ?, as shown in the following
code snippet:

Example04.ts

1 function myFunction(name?: string): string {
2 return `Hello ${name}!`;
3 }

Now we can successfully invoke it:
4 const message = myFunction();
5 console.log(message);

Link to the preceding example: https://packt.link/cnW4c

https://packt.link/cnW4c

Functions in TypeScript | 95

Running this command will display the following output:

Hello undefined!

In TypeScript, any variable that has yet to be assigned will have the value of
undefined. When the function is executed, the undefined value gets converted
to the undefined string at runtime, and so Hello undefined! is printed to
the console.

Default Parameters

In the preceding example, the name parameter has been made optional and since
it never got a value, we printed out Hello undefined!. A better way to do this
would be to give name a default value, as shown here:

Example05.ts

1 function myFunction(name: string = 'world'): string {
2 return `Hello ${name}!`;
3 }

Link to the preceding example: https://packt.link/zS5Ej

Now, the function will give us the default value if we don't provide one:
4 const message = myFunction();
5 console.log(message);

The output is as follows:

Hello world!

And it will give us the value we passed if we do provide one using the following code:

const message = myFunction('reader');

console.log(message);

This will then display the following output:

Hello reader!

This was pretty straightforward. Now, let's try working with multiple arguments.

https://packt.link/zS5Ej

96 | Functions

Multiple Arguments

Functions can have any number or type of arguments. The argument list is separated
by commas. Although your compiler settings can allow you to omit argument types,
it is a best practice to enable the noImplicitAny option. This will raise a compiler
error if you accidentally omit a type. Additionally, the use of the broad any type is
discouraged whenever possible, as was covered in Chapter 1, TypeScript Fundamentals
and Overview of Types. Chapter 6, Advanced Types, will give us a deeper dive into
advanced types, in particular, intersection and union types, that will help us to ensure
that all of our variables have good, descriptive types.

Rest Parameters

The spread operator (…) may be used as the final parameter to a function. This will
take all arguments passed into the function and place them in an array. Let's look at
an example of how this works:

Example06.ts

1 function readBook(title: string, ...chapters: number[]): void {
2 console.log(`Starting to read ${title}...`);
3 chapters.forEach(chapter => {
4 console.log(`Reading chapter ${chapter}.`);
5 });
6 console.log('Done reading.');
7 }

Link to the preceding example: https://packt.link/Fw2iC

Now, the function can be called with a variable argument list:

readBook('The TypeScript Workshop', 1, 2, 3);

The first argument is required. The rest will be optional. We could just decline to
specify any chapters to read. However, if we do give additional arguments, they must
be of the number type because that's what we've used as the type (number[]) for
our rest parameter.

You will obtain the following output once you run the preceding code:

Starting to read The TypeScript Book...

Reading chapter 1.

Reading chapter 2.

Reading chapter 3.

Done reading.

https://packt.link/Fw2iC

Functions in TypeScript | 97

Note that this syntax specifically requires single arguments of the number type. It
would be possible to implement the function without a rest parameter and instead
expect an array as a single argument:

Example07.ts

1 function readBook(title: string, chapters: number[]): void {
2 console.log(`Starting to read ${title}...`);
3 chapters.forEach(chapter => {
4 console.log(`Reading chapter ${chapter}.`);
5 });
6 console.log('Done reading.');
7 }

Link to the preceding example: https://packt.link/AvInF

The function will now require precisely two arguments:

readBook('The TypeScript Book', [1, 2, 3]);

The output is as follows:

Starting to read The TypeScript Book...

Reading chapter 1.

Reading chapter 2.

Reading chapter 3.

Done reading.

Which is better? That's something you'll need to decide for yourself. In this case, the
chapters we want to read are already in array form, and then it probably makes the
most sense to pass that array to the function.

Notice that the readBook function includes an arrow function inside it. We'll cover
arrow functions in an upcoming section.

Destructuring Return Types

At times, it may be useful for a function to return more than one value. Programmers
who have embraced functional programming paradigms often want a function that
will return a tuple, or an array of two elements that have different types. Going back
to our previous example, if we wanted to calculate both the average and standard
deviation for a number array, it might be convenient to have a single function that
handles both operations, rather than having to make multiple function calls with the
same number array.

https://packt.link/AvInF

98 | Functions

A function in TypeScript will only return one value. However, we can simulate
returning multiple arguments using destructuring. Destructuring is the practice of
assigning parts of an object or array to different variables. This allows us to assign
parts of a returning value to variables, giving the impression we are returning
multiple values. Let's look at an example:

Example08.ts

1 function paritySort(...numbers: number[]): { evens: number[], odds: 2 number[] }
{
3 return {
4 evens: numbers.filter(n => n % 2 === 0),
5 odds: numbers.filter(n => n % 2 === 1)
6 };
7 }

Link to the preceding example: https://packt.link/SHkuW

This code uses the filter method of the built-in array object to iterate through
each value in an array and test it. If the test returns a true Boolean, the value is
pushed into a new array, which is returned. Using the modulus operator to test
the remainder will filter our number array into two separate arrays. The function
then returns those arrays as properties of an object. We can take advantage of this
destructuring. Consider the following code:

const { evens, odds } = paritySort(1, 2, 3, 4);

console.log(evens);

console.log(odds);

Here, we give the function the arguments 1, 2, 3, 4, and it returns the
following output:

[2, 4]

[1, 3]

The Function Constructor

Note that the TypeScript language contains an uppercase Function keyword. This
is not the same as the lowercase function keyword and should not be used as it
is not considered to be secure due to its ability to parse and execute arbitrary code
strings. The Function keyword only exists in TypeScript because TypeScript is a
superset of JavaScript.

https://packt.link/SHkuW

Functions in TypeScript | 99

Exercise 3.02: Comparing Number Arrays

TypeScript comparison operators such as === or > only work on primitive types. If we
want to compare more complex types, such as arrays, we need to either use a library
or implement our own comparison. Let's write a function that can compare a pair of
unsorted number arrays and tell us whether the values are equal.

Note

The code file for this exercise can be found at https://packt.link/A0IxN.

1. Create a new file in VS Code and name it array-equal.ts.

2. Start with this code, which declares three different arrays and outputs,
irrespective of whether or not they are equal:

const arrayone = [7, 6, 8, 9, 2, 25];

const arraytwo = [6, 8, 9, 2, 25];

const arraythree = [6, 8, 9, 2, 25, 7];

function arrayCompare(a1: number[], a2: number[]): boolean {

 return true;

}

console.log(

 `Are ${arrayone} and ${arraytwo} equal?`,

 arrayCompare(arrayone, arraytwo)

);

console.log(

 `Are ${arrayone} and ${arraythree} equal?`,

 arrayCompare(arrayone, arraythree)

);

console.log(

 `Are ${arraytwo} and ${arraythree} equal?`,

 arrayCompare(arraytwo, arraythree)

);

The output will be true for all three comparisons because the function has not
been implemented and just returns true.

https://packt.link/A0IxN

100 | Functions

Our function, arrayCompare, takes two arrays as arguments and returns a
Boolean value to represent whether or not they are equal. Our business rule is
that arrays can be unsorted and will be considered equal if all their values match
when sorted.

3. Update arrayCompare with the following code:

function arrayCompare(a1: number[], a2: number[]): boolean {

 if(a1.length !== a2.length) {

 return false;

 }

 return true;

}

In the preceding code, we are testing to see whether the two arrays passed in
are equal. The first check we should make is to test whether the arrays have
equal length. If they aren't equal in length, then the values can't possibly be
equal, so we'll return false from the function. If we hit a return statement
during execution, the rest of the function won't be executed.

At this point, the function will only tell us whether the arrays are equal in
length. To complete the challenge, we'll need to compare each value in the
arrays. This task will be considerably easier if we sort the values before trying
to compare them. Fortunately, the array object prototype includes a sort()
method, which will handle this for us. Using built-in functions can save a lot of
development hours.

4. Implement the sort() method to sort array values:

function arrayCompare(a1: number[], a2: number[]): boolean {

 if(a1.length !== a2.length) {

 return false;

 }

 a1.sort();

 a2.sort();

 return true;

}

The sort() method sorts the array elements in place, so it isn't necessary to
assign the result to a new variable.

Functions in TypeScript | 101

Finally, we need to loop over one of the arrays to compare each element at the
same index. We use a for loop to iterate through the first array and compare
the value at each index to the value at the same index in the second array. Since
our arrays use primitive values, the !== comparison operator will work.

5. Use the following for loop to loop over the arrays:

function arrayCompare(a1: number[], a2: number[]): boolean {

 if(a1.length !== a2.length) {

 return false;

 }

 a1.sort();

 a2.sort();

 for (let i = 0; i < a1.length; i++) {

 if (a1[i] !== a2[i]) {

 return false;

 }

 }

 return true;

}

Again, we'll return false and exit the function if any of the comparisons fail.

6. Execute the program using ts-node:

npx ts-node array-equal.ts

The program will produce the following output:

Are 7,6,8,9,2,25 and 6,8,9,2,25,8 equal? false

Are 2,25,6,7,8,9 and 6,8,9,2,25,7 equal? true

Are 2,25,6,8,8,9 and 2,25,6,7,8,9 equal? False

7. Experiment with different array combinations and validate the program is
working correctly.

A good function takes an argument list and returns a single value. You now have
experience writing a function as well as utilizing built-in functions to solve problems.

102 | Functions

Function Expressions
Function expressions differ from function declarations in that they can be assigned
to variables, used inline, or invoked immediately – an immediately invoked function
expression or IIFE. Function expressions can be named or anonymous. Let's look at a
few examples:

Example09.ts

1 const myFunction = function(name: string): string {
2 return `Hello ${name}!`;
3 };
4 console.log(myFunction('function expression'));

Link to the preceding example: https://packt.link/2JeGQ

You will get the following output:

Hello function expression!

This looks quite a lot like a previous example we looked at, and it works almost
exactly the same. Here is the function declaration for comparison:

function myFunction(name: string = 'world'): string {

 return `Hello ${name}!`;

}

The one slight difference is that function declarations are hoisted, meaning they are
loaded into memory (along with any declared variables) and, as such, can be used
before they are declared in code. It is generally considered bad practice to rely on
hoisting and, as such, it is now allowed by many linters. Programs that make heavy
use of hoisting can have bugs that are difficult to track down and may even exhibit
different behaviors in different systems. One of the reasons why function expressions
have become popular is because they don't allow hoisting and therefore avoid
these issues.

Function expressions can be used to create anonymous functions, that is, functions
that do not have names. This is impossible with function declarations. Anonymous
functions are often used as callbacks to native functions. For example, consider the
following code snippet with the Array.filter function:

Example10.ts

1 const numbers = [1, 3, 2];
2 const filtered = numbers.filter(function(val) {return val < 3});
3 console.log(filtered);

Link to the preceding example: https://packt.link/aJyhj

https://packt.link/2JeGQ
https://packt.link/aJyhj

Function Expressions | 103

The output is as follows:

[1, 2]

Remember that in TypeScript (as well as JavaScript), functions are can be given as
arguments to, or returned from, other functions. This means that we can give the
anonymous function, function(val) { return val < 3 }, as an argument
to the Array.filter function. This function is not named and cannot be referred
to or invoked by other code. That's fine for most purposes. If we wanted to, we could
give it a name:

const filtered = numbers.filter(function myFilterFunc(val) {return val <
3});

There's little point in doing this in most cases, but it might be useful if the function
needed to be self-referential, for example, a recursive function.

Note

For more information about callbacks, refer to Chapter 11, Higher-Order
Functions and Callbacks in TypeScript.

Immediately invoked function expressions look like this:

Example11.ts

1 (function () {
2 console.log('Immediately invoked!');
3 })();

Link to the preceding example: https://packt.link/iQoSX

The function outputs the following:

 "Immediately invoked!"

https://packt.link/iQoSX

104 | Functions

The function is declared inline and then the additional () parentheses at the end
invoke the function. The primary use case for an IIFE in TypeScript involves another
concept known as closure, which will be discussed later in this chapter. For now, just
learn to recognize this syntax where a function is declared and invoked right away.

Arrow Functions
Arrow functions present a more compact syntax and also offer an alternative to the
confusing and inconsistent rules surrounding the this keyword. Let's look at the
syntax first.

An arrow function removes the function keyword and puts a "fat arrow" or =>
between the parameter list and the function body. Arrow functions are never named.
Let's rewrite the function that logs Hello:

const myFunction = (name: string): string => {

 return `Hello ${name}!`;

};

This function can be made even more compact. If the function simply returns a value,
the braces and the return keyword can both be omitted. Our function now looks
like this.

const myFunction = (name: string): string => `Hello ${name}!`;

Arrow functions are very frequently used in callback functions. The callback to the
preceding filter function can be rewritten using an arrow function. Again, callbacks
will be discussed in more detail in Chapter 11, Higher-Order Functions and Callbacks in
TypeScript. Here is another example of an arrow function:

Example12.ts

1 const numbers = [1, 3, 2];
2 const filtered = numbers.filter((val) => val < 3);
2 console.log(filtered);

Link to the preceding example: https://packt.link/lUTCm

The output is as follows:

[1, 2]

https://packt.link/lUTCm

Type Inference | 105

This concise syntax may look confusing at first, so let's break it down. The filter
function is a built-in method of the array object in TypeScript. It will return a new
array containing all the items in the array that match the criteria in the callback
function. So, we are saying for each val, add it to the new array if val is less than 3.

Arrow functions are more than just a different syntax. While function declarations
and function expressions create a new execution scope, arrow functions do not.
This has implications when it comes to using the this (see below) and new (see
Chapter 4, Classes and Objects) keywords.

Type Inference
Let's consider the following code:

const myFunction = (name: string): string => `Hello ${name}!`;

const numbers = [1, 3, 2];

const filtered = numbers.filter((val) => val < 3);

console.log(filtered);

The output is as follows:

[1, 2]

Notice that in the preceding code, we aren't specifying a type for the numbers
constant. But wait, isn't this a book on TypeScript? Yes, and now we come to one of
the best features of TypeScript: type inference. TypeScript has the ability to assign
types to variables when we omit them. When we declare const numbers = [1,
2, 3];, TypeScript will intuitively understand that we are declaring an array of
numbers. If we wanted to, we could write const numbers: number[] = [1,
2, 3];, but TypeScript will see these declarations as equal.

The preceding code is 100% valid ES6 JavaScript. This is great because any JavaScript
developer will be able to read and understand it, even if they have no experience with
TypeScript. However, unlike JavaScript, TypeScript will prevent you from making an
error by putting the wrong type of value into the numbers array.

Because TypeScript has inferred the type of our numbers array, we would
not be able to add a value other than a number to it; for example, numbers.
push('hello'); will result in a compiler error. If we wanted to declare an
array that would allow other types, we'd need to declare that explicitly – const
numbers: (number | string)[] = [1, 3, 2];. Now, we can later assign a
string to this array. Alternatively, an array declared as const numbers = [1, 2,
3, 'abc']; would already be of this type.

106 | Functions

Going back to our filter function, this function is also not specifying any type for
the parameter or the return type. Why is this allowed? It's our friend, type inference,
again. Because we're iterating over an array of numbers, each item in that array
must be a number. Therefore, val will always be a number and the type need not be
specified. Likewise, the expression val < 3 is a Boolean expression, so the return
type will always be a Boolean. Remember that optional means you can always opt
to provide a required type and you definitely should if that improves the clarity or
readability of your code.

When an arrow function has a single parameter and the type can be inferred, we
can make our code slightly more concise by omitting the parentheses around the
parameter list. Finally, our filter function may look like this:

Example13.ts

1 const numbers = [1, 3, 2];
2 const filtered = numbers.filter(val => val < 3);
3 console.log(filtered);

Link to the preceding example: https://packt.link/hvbsc

The output is as follows:

[1, 2]

The syntax you choose is really a matter of taste, but many experienced
programmers gravitate to the more concise syntax, so it's important to at least be
able to read and understand it.

Exercise 3.03: Writing Arrow Functions

Now, let's write some arrow functions and get used to that syntax, as well as start to
build our utility library. A good candidate for a utility library is a function that might
be called. In this exercise, we'll write a function that takes a subject, verb, and list of
objects and returns a grammatically correct sentence.

Note

The code file for this exercise can be found at https://packt.link/yIQnz.

https://packt.link/hvbsc
https://packt.link/yIQnz

Type Inference | 107

1. Create a new file in VS Code and save it as arrow-cat.ts.

2. Start with a pattern for the function we need to implement, along with some
calls to it:

export const sentence = (

 subject: string,

 verb: string,

 ...objects: string[]

): string => {

 return 'Meow, implement me!';

};

console.log(sentence('the cat', 'ate', 'apples', 'cheese',
'pancakes'));
console.log(sentence('the cat', 'slept', 'all day'));

console.log(sentence('the cat', 'sneezed'));

Our sentence function obviously isn't doing what we need it to do. We can
modify the implementation to use a template string to output the subject, verb,
and objects.

3. Use the following code to implement a template string to output the subject,
verb, and objects:

export const sentence = (

 subject: string,

 verb: string,

 ...objects: string[]

): string => {

 return `${subject} ${verb} ${objects}.`;

};

Now, when we execute our program, we get the following output:

the cat ate apples,cheese,pancakes.

the cat slept all day.

the cat sneezed .

This is readable, but we have a number of issues with capitalization and word
spacing. We can add some additional functions to help with these problems.
Thinking through what should logically happen for these cases, if there are
multiple objects, we'd like commas between them and to use "and" before the
final object. If there's a single object, there shouldn't be commas or "and," and if
there's no object, there shouldn't be an empty space, as there is here.

108 | Functions

4. Implement a new function to add this logic to our program:

export const arrayToObjectSegment = (words: string[]): string => {

 if (words.length < 1) {

 return '';

 }

 if (words.length === 1) {

 return ` ${words[0]}`;

 }

 ...

};

Here, we implement the easier cases. If there are no objects, we want to return
an empty string. If there is just one, we return that object with a leading space.
Now, let's tackle the case of multiple objects.

We will need to add the objects to a comma-separated list, and if we have
reached the last object, join it with "and".

5. To do this, we'll initialize an empty string and loop over the array of objects:

export const arrayToObjectSegment = (words: string[]): string => {

 if (words.length < 1) {

 return '';

 }

 if (words.length === 1) {

 return ` ${words[0]}`;

 }

 let segment = '';

 for (let i = 0; i < words.length; i++) {

 if (i === words.length - 1) {

 segment += ` and ${words[i]}`;

 } else {

 segment += ` ${words[i]},`;

 }

 }

 return segment;

};

By breaking the problem down into small components, we've
come up with a function that solves all our use cases. Our return
statement from sentence can now be return `${subject}
${verb}${arrayToObjectSegment(objects)}.`;.

Type Inference | 109

Notice how the function that returns a string can fit right into our string
template. Running this, we get the following output:

the cat ate apples, cheese, and pancakes.

the cat slept all day.

the cat sneezed.

That's almost correct, but the first letter of the sentence should be capitalized.

6. Use another function to handle capitalization and wrap the whole string
template with it:

export const capitalize = (sentence: string): string => {

 return `${sentence.charAt(0).toUpperCase()}${sentence

 .slice(1)

 .toLowerCase()}`;

};

7. This function uses several built-in functions: charAt, toUpperCase, slice,
and toLowerCase, all inside a string template. These functions grab the first
character from our sentence, make it uppercase, and then concatenate it with
the rest of the sentence, all cast to lowercase.

Now, when we execute the program, we get the desired result:

The cat ate apples, cheese, and pancakes.

The cat slept all day.

The cat sneezed.

To complete this exercise, we wrote three different functions, each serving a single
purpose. We could have jammed all the functionality into a single function, but that
would make the resulting code less reusable and more complicated to read and test.
Building software from simple, single-purpose functions remains one of the best ways
to write clean, maintainable code.

Understanding this

Many developers have been frustrated by the this keyword. this nominally
points to the runtime of the current function. For example, if a member function of
an object is invoked, this will usually refer to that object. The use of this across
other contexts may seem inconsistent, and its use can result in a number of unusual
bugs. Part of the problem lies in the fact that the keyword is relatively straightforward
to use in languages such as C++ or Java and programmers with experience in those
languages may expect the TypeScript this to behave similarly.

110 | Functions

Let's look at a very simple use case for this:

const person = {

 name: 'Ahmed',

 sayHello: function () {

 return `Hello, ${this.name}!`

 }

}

console.log(person.sayHello());

Here we declare an object that has a property, name, and a method, sayHello.
In order for sayHello to read the name property, we use this to refer to the
object itself. There's nothing wrong with this code and many programmers will find it
quite intuitive.

The problem will come in when we need to declare another function inline, likely as a
callback function for something like the filter function we looked at earlier.

Let's imagine we want to encapsulate the arrayFilter function in an object that
can have a property to specify the maximum number allowed. This object will have
some resemblance to the previous one, and we might expect to be able to employ
this to get that maximum value. Let's see what happens when we try:

const arrayFilter = {

 max: 3,

 filter: function (...numbers: number[]) {

 return numbers.filter(function (val) {

 return val <= this.max;

 });

 }

}

console.log(arrayFilter.filter(1, 2, 3, 4));

TypeScript doesn't like my code. I'll have a red squiggly line under this, depending
on my editor, and I won't be able to execute my program. Even if the program
executes, you will not obtain the intended output.

The problem here is that my use of the function keyword creates a new scope and
this no longer has the value I want it to. In fact, it has no value. It is undefined.

Type Inference | 111

The reason for this is that unlike object-oriented languages, such as C++ and Java, the
value of this will be determined at runtime and it will be set to the calling scope. In
this case, our callback function is not part of any set context or object, and so this is
undefined. The fact that it's undefined is really immaterial here. The important
part is that it's not what we want.

There have been a number of workarounds to this problem over the years. One of
them is that we cache the this reference to another variable and make that variable
available in our callback function. Another is that we use the bind member function
of the Function prototype to set the this reference. You may come across code
that looks like this.

A better solution is to simply use arrow functions instead of function expressions. Not
only is the syntax more concise and more modern, but arrow functions do not create
a new this context. You get the this reference that you want, that of a top-level
object. Let's rewrite the code using an arrow function:

Example14.ts

1 const arrayFilter = {
2 max: 3,
3 filter: function(...numbers: number[]) {
4 return numbers.filter(val => {
5 return val <= this.max;
6 });
7 }
8 }
9 console.log(arrayFilter.filter(1, 2, 3, 4));

Link to the preceding example: https://packt.link/90JSJ

The function produces the following output:

[1, 2, 3]

TypeScript no longer complains about this and the code works correctly.

But wait, why are we using a function expression for the filter function and an
arrow function for the callback? It's because we actually need the scope-creating
capability of function in order for this to have a value. If we rewrote the filter
function as an arrow function, this would never be set and we wouldn't be able to
access the max property.

https://packt.link/90JSJ

112 | Functions

This is confusing, to be sure, and it's the reason this is dreaded in TypeScript and
JavaScript more than in other languages. The important thing to remember is that
when you are programming with this, you want any object or class methods to be
function expressions and any callbacks to be arrow functions. That way, you'll always
have the correct instance of this.

Chapter 4 , Classes and Objects, will contain a deeper dive into classes and explore
other patterns. Let's now use this in an object in the following exercise.

Exercise 3.04: Using this in an Object

For this exercise, we will imagine that we have to implement some accounting
software. In this software, each account object will track the total amount due, along
with the amount that has been paid, and will have a couple of utility methods to get
the current state of the account and the balance that needs to be paid.

Let's start by creating the object with its methods unimplemented. This example will
demonstrate a simplified workflow where we print out the account, attempt to pay
more than is due (receiving an error), then pay the amount due, and finally the full
amount due:

Note

The code file for this exercise can be found at https://packt.link/P6YIf.

1. Write the following code, which is the basis for starting our program:

export const account = {

 due: 1000,

 paid: 0,

 status: 'OPEN',

 payAccount: function (amount: number): string {

 return 'unimplemented!';

 },

 printStatus: function (): string {

 return 'unimplemented!';

 },

};

https://packt.link/P6YIf

Type Inference | 113

console.log(account.printStatus());

console.log(account.payAccount(1500));

console.log(account.payAccount(500));

console.log(account.payAccount(500));

We need to implement both methods. The printStatus method will just
output the total that was due, the amount paid so far, and whether the account
is open or closed (or fully paid).

2. Use a string template to output the status, but in order to access the properties
on the account object, use the this keyword:

 printStatus: function (): string {

 return `$${this.paid} has been paid and $${

 this.due - this.paid

 } is outstanding. This account is ${this.status}.`;

 },

We implement the printStatus function expression as a string template
that uses this to access properties on the same object. As a reminder, we
must use a function expression here and cannot use an arrow function, even
if we might prefer that syntax, because arrow functions do not create a new
execution context.

In case there's any confusion, there's no double dollar sign operator here.
The first is a literal indicating the currency, and the second is part of the
template string.

Now let's handle the payment. Our requirements are that if the amount
paid exceeds the amount due, we should throw an error and not apply any
payment. Otherwise, we track the additional payment. If the balance reaches
$0, then we close the account. We should also print the current status following
each transaction.

3. Write the code to handle the payment:

 payAccount: function (amount: number): string {

 if (amount > this.due - this.paid) {

 return `$${amount} is more than the outstanding balance of $${

 this.due - this.paid

 }.`;

 }

114 | Functions

 this.paid += amount;

 if (this.paid === this.due) {

 this.status = 'CLOSED';

 }

 return this.printStatus();

 },

4. Execute the program and check the output:

$0 has been paid and $1000 is outstanding. This account is OPEN.

$1500 is more than the outstanding balance of $1000.

$500 has been paid and $500 is outstanding. This account is OPEN.

$1000 has been paid and $0 is outstanding. This account is CLOSED

In this exercise, we used function expressions as object methods to access properties
on the object. Methods can not only read properties on an object, they can also
update them. It's a common pattern in object-oriented programming to have objects
that both contain data and have the methods available to access and mutate them.
Sometimes, those methods will be set to private and only accessed via accessors such
as get and set. More on this subject will be covered in Chapter 4, Classes and Objects.

As we've seen in this exercise, when implementing object-oriented patterns, function
expressions are still important to know and understand.

Closures and Scope

In addition to everything else we've discussed so far, functions do something special
in TypeScript. When a function is declared (be it a function statement, expression,
or arrow function), it encloses any variables in a higher scope. This is called a
closure. Any function can be a closure. A closure is simply a function that has
enclosed variables.

The concept of scope simply means that each function creates a new scope. As we've
seen, functions can be declared inside other functions. The inner function can
read any variables declared in the outer function, but the outer function cannot see
variables declared in the inner function. This is scope. The following code establishes
an outer scope and an inner scope by declaring a second function inline inside
an outer function. The inner function is able to access the variables in the outer
scope, but the world variable declared in the inner scope is not visible outside
that function:

Type Inference | 115

Example15.ts

1 const outer = (): void => {
2 const hello = 'Hello';
3 const inner = (): void => {
4 const world = 'world!';
5 console.log(`${hello} ${world}`);
6 }
7 inner();
8
9 console.log(`${hello} ${world}`);
10 }
11 outer();

Link to the preceding example: https://packt.link/USZ74

The function produces the following output:

Hello world!

ReferenceError: world is not defined

When this function is invoked, the inner log statement is reached and logs
"Hello world!", and then the outer log statement is reached and we get
ReferenceError. We can fix ReferenceError by adding let world; to the
outer function:

Example16.ts

1 const outer = (): void => {
2 const hello = 'Hello';
3 let world;
4 const inner = (): void => {
5 const world = 'world!';
6 console.log(`${hello} ${world}`);
7 }
8 inner();
8
9 console.log(`${hello} ${world}`);
10 }
11 outer();

Link to the preceding example: https://packt.link/yC0Zq

The function produces the following output:

Hello world!

Hello undefined!

https://packt.link/USZ74
https://packt.link/yC0Zq

116 | Functions

This is because the inner function declared a new world variable that the outer
function cannot access. We can drop const from the inner declaration:

Example17.ts

1 const outer = (): void => {
2 const hello = 'Hello';
3 let world;
4 const inner = (): void => {
5 world = 'world!';
6 console.log(`${hello} ${world}`);
7 }
8 inner();
9
10 console.log(`${hello} ${world}`);
11 }
12
13 outer();

Link to the preceding example: https://packt.link/fCsaY

The function produces the following output:

Hello world!

Hello world!

The function finally works because the inner function operates against a variable
that was declared in the scope of the outer function. It is still visible after the inner
scope is exited, so it can be printed out.

Let's look at a more useful example. The Fibonacci sequence is a number set in which
the next number is the sum of the two previous numbers: [0, 1, 1, 2, 3, 5,
8, 13, 21, …]. The Fibonacci sequence is often used to help explain recursive
functions. In this case, we will instead use it to demonstrate closures by writing a
function that will return the next value in the sequence each time it is called.

https://packt.link/fCsaY

Type Inference | 117

The logic of our program will be that we will track the current number being returned
by our function, the next one that should be, and the amount to increment the
number. Each time it is called, all three numbers will be updated to prepare for the
next call. One way to do that is to define these values as global scoped variables and
write a simple function to update and track them. That might look like this:

Example_Fibbonacci_1.ts

1 let next = 0;
2 let inc = 1;
3 let current = 0;
4
5 for (let i = 0; i < 10; i++) {
6 [current, next, inc] = [next, inc, next + inc];
7 console.log(current);
8 }

Link to the preceding example: https://packt.link/17Hda

The function produces the following output:

0

1

1

2

3

5

8

13

21

34

https://packt.link/17Hda

118 | Functions

This program works and returns the desired result, but since it isn't a function, the
program will just execute once and stop. If you wanted to get the next Fibonacci
number as part of some other process, you wouldn't be able to. If you just wrap it in a
function, that won't work either:

Example_Fibbonacci_2.ts

1 const getNext = (): number => {
2 let next = 0;
3 let inc = 1;
4 let current = 0;

5 [current, next, inc] = [next, inc, next + inc];
6 return current;
7 };
8
9 for (let i = 0; i < 10; i++) {
10 console.log(getNext());
11 }

Link to the preceding example: https://packt.link/rfDuz

The function produces the following output:

0

0

//...

This function will just return 0 every time it's called because all the variables get
re-declared when it's invoked. We can fix that by moving the variables outside
the function. That way, they are declared once and modified by the function
being invoked.

https://packt.link/rfDuz

Type Inference | 119

Our function now sets up the next value to be returned, the amount to increment,
and the most recent returned value. On each function call in the loop, it will replace
the current value with the next value, the next value with the increment amount,
and the increment amount to the sum of the next value plus the previous increment
amount. Then it logs out the current value:

Example_Fibbonacci_3.ts

1 let next = 0;
2 let inc = 1;
3 let current = 0;
4
5 const getNext = (): number => {
6 [current, next, inc] = [next, inc, next + inc];
7 return current;
8 };
9
10 for (let i = 0; i < 10; i++) {
11 console.log(getNext());
12 }

Link to the preceding example: https://packt.link/mAEds

The function produces the following output:

0

1

1

2

3

5

8

13

21

34

https://packt.link/mAEds

120 | Functions

This works! The reason it works is that the getNext function is able to access the
variables in the higher scope. The function is a closure. This will seem standard and
expected, but what might be unexpected is that this will work even if the function is
exported and called by some other part of the program. This can be illustrated better
by creating another function:

Example_Fibbonacci_4.ts

1 const fibonacci = () => {
2 let next = 0;
3 let inc = 1;
4 let current = 0;
5 return () => {
6 [current, next, inc] = [next, inc, next + inc];
7 return current;
8 };
9 };
10 const getNext = fibonacci();
11 for (let i = 0; i < 10; i++) {
12 console.log(getNext());
13 }

Link to the preceding example: https://packt.link/CdKte

The output hasn't changed:

0

1

1

2

3

//...

Calling the fibonacci function will return a new function that has access to the
variables declared in fibonacci. If we wanted to run another Fibonacci sequence,
we could call fibonacci() again to get a fresh scope with initialized variables:

https://packt.link/CdKte

Type Inference | 121

Example_Fibbonacci_5.ts

1 const fibonacci = () => {
2 let next = 0;
3 let inc = 1;
4 let current = 0;
5 return () => {
6 [current, next, inc] = [next, inc, next + inc];
7 return current;
8 };
9 };
10 const getNext = fibonacci();
11 const getMoreFib = fibonacci();
12 for (let i = 0; i < 10; i++) {
13 console.log(getNext());
14 }
15 for (let i = 0; i < 10; i++) {
16 console.log(getMoreFib());
17 }

Link to the preceding example: https://packt.link/0nGph

We'll see the same output again, but twice this time:

0

1

1

2

//…

21

34

0

1

1

2

//…

Note

For ease of presentation, only a section of the actual output is displayed.

https://packt.link/0nGph

122 | Functions

In both cases, the closures have closed over the variables in a higher scope and are
still available on function calls. This is a powerful technique, as has been shown, but
could potentially lead to memory leaks if not used correctly. Variables declared in a
closure like this cannot be garbage-collected while a reference to them still exists.

Exercise 3.05: Creating the Order Factory with Closures

Closures can be tricky to work with, but a common pattern that really brings out
the usefulness is sometimes called a factory pattern. This is, simply, a function that
returns another function that is all set up and ready for use. In this pattern, a closure
is used to make sure that variables can persist between function calls. We'll explore
this pattern in this exercise.

Let's start with some code that almost does what we want it to do. We are working
on an order system for some sort of garment. Each order that comes in will specify a
quantity of the garment in identical color and size. We just have to produce a record
of each garment with a unique ID for tracking:

Note

The code file for this exercise can be found at https://packt.link/fsqdd.

1. Create a new file in VS Code and save it as order.ts. Begin with the following
code with some sample calls:

interface Order {

 id: number;

 color: string;

 size: string;

}

export const createOrder = (

 color: string,

 size: string,

 quantity: number

): Order[] => {

 let id = 0;

 const orders = [];

 for (let i = 0; i < quantity; i++) {

 orders.push({ id: id++, color, size });

 }

 return orders;

https://packt.link/fsqdd

Type Inference | 123

};

const orderOne = createOrder('red', 'M', 4);

console.log(orderOne);

const orderTwo = createOrder('blue', 'S', 7);

console.log(orderTwo);

The code looks OK. Let's run it and see how it works. You will obtain the
following output:

[

 { id: 0, color: 'red', size: 'M' },

 { id: 1, color: 'red', size: 'M' },

 { id: 2, color: 'red', size: 'M' },

 { id: 3, color: 'red', size: 'M' }

]

[

 { id: 0, color: 'blue', size: 'S' },

 { id: 1, color: 'blue', size: 'S' },

 { id: 2, color: 'blue', size: 'S' },

 { id: 3, color: 'blue', size: 'S' },

 { id: 4, color: 'blue', size: 'S' },

 { id: 5, color: 'blue', size: 'S' },

 { id: 6, color: 'blue', size: 'S' }

]

That's not right. We can't start the ID numbers over at zero again each time. How
can we fix this problem?

There are a couple of ways to fix this. The easiest way to do it would be to
declare the ID number outside of orderFactory. However, doing that might
lead to bugs as system complexity grows. Variables that are in a topmost or even
global scope are accessible to every part of the system and may get modified by
some edge case.

2. Use a closure to solve this problem instead. Create an orderFactory function
that returns an instance of createOrder, which will put the ID number in
the scope just over createOrder. That way, the ID will be tracked between
multiple calls of createOrder:

export const orderFactory = (): ((

 color: string,

 size: string,

 qty: number

124 | Functions

) => Order[]) => {

 let id = 0;

 return (color: string, size: string, qty: number): Order[] => {

 const orders = [];

 for (let i = 0; i < qty; i++) {

 orders.push({ id: id++, color, size });

 }

 return orders;

 };

};

This factory function returns another function, which is defined inline as an
arrow function. Before that function is returned, the id variable is declared in
the scope just above it. Each invocation of the returned function will see the
same instance of id and thus it will retain its value between calls.

3. In order to make use of the factory, call the function once:

const createOrder = orderFactory();

Calling orderFactory once will initialize the ID variable and make it available
in the returned function that is now assigned to createOrder. That variable
is now enclosed. No other code will be able to access it or, more importantly,
modify it.

4. Run the program and observe that we now get the correct output:

[

 { id: 0, color: 'red', size: 'M' },

 { id: 1, color: 'red', size: 'M' },

 { id: 2, color: 'red', size: 'M' },

 { id: 3, color: 'red', size: 'M' }

]

[

 { id: 4, color: 'blue', size: 'S' },

 { id: 5, color: 'blue', size: 'S' },

 { id: 6, color: 'blue', size: 'S' },

Type Inference | 125

 { id: 7, color: 'blue', size: 'S' },

 { id: 8, color: 'blue', size: 'S' },

 { id: 9, color: 'blue', size: 'S' },

 { id: 10, color: 'blue', size: 'S' }

]

Closures can be very difficult to understand without practice. Beginner TypeScript
programmers shouldn't worry about mastering them immediately, but it's very
important to recognize factory patterns and the behavior of enclosed variables.

Currying

Currying (named after Haskell Brooks Curry, the mathematician after whom the
Haskell, Brooks, and Curry programming languages are also named) is the act of
taking a function (or a formula in mathematics) and breaking it down into individual
functions, each with a single parameter.

Note

For more information on currying, refer to the following URL:
https://javascript.info/currying-partials.

Since functions in TypeScript can return functions, arrow syntax gives us a
special concise syntax that makes currying a popular practice. Let's start with
a simple function:

Example_Currying_1.ts

1 const addTwoNumbers = (a: number, b: number): number => a + b;
2 console.log(addTwoNumbers(3, 4));

Link to the preceding example: https://packt.link/InDVT

The output is as follows:

7

https://javascript.info/currying-partials
https://packt.link/InDVT

126 | Functions

Here, we've used arrow syntax to describe a function body without braces or the
return keyword. The function returns the result of the single expression in the
body. This function expects two parameters and can be rewritten as curried functions
with a single parameter each:

Example_Currying_2.ts

1 const addTwoNumbers = (a: number): ((b: number) => number) => (b:
2 number): number => a + b;
3 console.log(addTwoNumbers(3)(4));

Link to the preceding example: https://packt.link/975cf

The output is as follows:

7

This is actually two function declarations. The first function returns another
function, which actually does the calculation. Because of closures, the a parameter
is available within the second function, as well as its own parameter, b. The two
sets of parentheses mean that the first one returns a new function that is then
invoked immediately by the second one. The preceding code could be rewritten in a
longer form:

Example_Currying_3.ts

1 const addTwoNumbers = (a: number): ((b: number) => number) => {
2 return (b: number): number => {
3 return a + b;
4 }
5 }
6
7 const addFunction = addTwoNumbers(3);
8
9 console.log(addFunction(4));

Link to the preceding example: https://packt.link/TgC17

The output is as follows:

7

It looks a bit silly when written that way, but these do exactly the same thing.

So what use is currying?

https://packt.link/975cf
https://packt.link/TgC17

Type Inference | 127

Higher-order functions are a variety of curried functions. Higher-order functions both
take a function as an argument and return a new function. These functions are often
wrapping or modifying some existing functionality. How can we wrap our REST client
in a higher-order function to ensure that all responses, whether successful or in error,
are handled in a uniform way? This will be the focus of the next exercise.

Exercise 3.06: Refactoring into Curried Functions

Currying makes use of closures and is closely related to the last exercise, so let's
return to it and establish the solution from the last exercise as the starting point for
this one. Our orderFactory function is doing its job and tracking IDs properly, but
the initialization of each type of garment is too slow. The first time an order for red
medium comes in, we expect some time will be taken in spinning up this particular
recipe, but subsequent red mediums suffer the same latency. Our system isn't
efficient enough to handle the demand for popular items. We need some way to cut
into the setup time each time a similar order comes in:

Note

The code file for this exercise can be found at https://packt.link/jSKic.

1. Review the code from Exercise 3.05, Creating the Order Factory with Closures
(order-solution.ts):

interface Order {

 id: number;

 color: string;

 size: string;

}

export const orderFactory = (): ((

 color: string,

 size: string,

 qty: number

) => Order[]) => {

 let id = 0;

 return (color: string, size: string, qty: number): Order[] => {

 const orders = [];

 for (let i = 0; i < qty; i++) {

 orders.push({ id: id++, color, size });

 }

https://packt.link/jSKic

128 | Functions

 return orders;

 };

};

const createOrder = orderFactory();

const orderOne = createOrder('red', 'M', 4);

console.log(orderOne);

const orderTwo = createOrder('blue', 'S', 7);

console.log(orderTwo);

How can we use currying to increase efficiency? You need to refactor the code
into curried functions.

2. Refactor orderFactory to return a curried function by breaking up the
returned function into three separate functions, each of which returns the
next function:

export const orderFactory = () => {

 let id = 0;

 return (color: string) => (size: string) => (qty: number) => {

 const orders = [];

 for (let i = 0; i < qty; i++) {

 orders.push({ id: id++, color, size });

 }

 return orders;

 };

};

In this case, our refactor is as simple as putting an arrow in between each
parameter. Note that this code omits return types from the functions. There
are two reasons for this. One is that the type can be reasonably inferred from
the code and is quite clear. The other is that adding all of the return types will
significantly clutter the code.

If we add all the return types together, the code will look like this:

export const orderFactory = (): ((

 color: string

) => (size: string) => (qty: number) => Order[]) => {

 let id = 0;

 return (color: string): ((size: string) => (qty: number) =>
Order[]) => (
 size: string

Type Inference | 129

) => (qty: number): Order[] => {

 const orders = [];

 for (let i = 0; i < qty; i++) {

 orders.push({ id: id++, color, size });

 }

 return orders;

 };

};

TypeScript gives us the flexibility of choosing between explicitly declaring types
and allowing type inference, when clear, to supply the correct types.

Now that orderFactory returns a curried function, we can take advantage
of it.

3. Instead of passing every argument to createOrder, call createOrder with
just the first argument to establish our line of red garments:

const redLine = createOrder('red');

4. Then, further break out the individual items available:

const redSmall = redLine('S');

const redMedium = redLine('M');

5. When necessary or appropriate, create an item on one line:

const blueSmall = createOrder('blue')('S')

6. Try creating many different combinations of orders and printing out the results:

const orderOne = redMedium(4);

console.log(orderOne);

const orderTwo = blueSmall(7);

console.log(orderTwo);

const orderThree = redSmall(11);

console.log(orderThree);

130 | Functions

7. When you run the program, you'll see the following output:

[

 { id: 0, color: 'red', size: 'M' },

 { id: 1, color: 'red', size: 'M' },

 { id: 2, color: 'red', size: 'M' },

 { id: 3, color: 'red', size: 'M' }

]

//...

Note

For ease of presentation, only a section of the actual output is shown here.

Currying is a powerful technique for caching variables and partial function results. At
this point, we've explored closures, higher-order functions, and currying, all of which
show the power and versatility of functions in TypeScript.

Functional Programming
Functional programming is a deep topic and the subject of many books by itself. This
book can only touch on the topic. One of the foundational concepts in functional
programming is to use simple functions that have an input and an output and do not
modify variables that are outside their scope:

Example_Functional_1.ts

1 let importantNumber = 3;
2
3 const addFive = (): void => {
4 importantNumber += 5;
5 };
6
7 addFive();
8
9 console.log(importantNumber);

Link to the preceding example: https://packt.link/CTn1X

https://packt.link/CTn1X

Functional Programming | 131

The function produces the following output:

8

The output of this program is correct. We have indeed added 5 to the initial value of
3, but the addFive method accesses a variable in a higher scope and mutates it. It
is greatly preferred in functional programming paradigms to instead return the new
value and allow the outer scope to control the variables that have been declared in it.
We can change addFive so that it no longer operates on variables outside its scope
and instead only operates against its argument and returns the correct value:

Example_Functional_2.ts

1 let importantNumber = 3;
2
3 const addFive = (num: number): number => {
4 return num + 5;
5 };
6
7 importantNumber = addFive(importantNumber);
8
9 console.log(importantNumber);

Link to the preceding example: https://packt.link/6fWcF.

The function produces the following output:

8

The function is now much more portable. It would be easier to test or reuse since
it's not reliant on something in a higher scope. A functional programming paradigm
encourages the use of smaller functions. Sometimes, programmers can write
functions that do too many different things and are hard to read and maintain. This
is often a source of bugs or a negative impact on team velocity. By keeping functions
small and simple, we can chain logic together in ways that support maintenance
and reusability.

https://packt.link/6fWcF

132 | Functions

A popular concept in functional programming is immutability. That is the concept
whereby once a variable is declared, its value should not change. To understand why
this would be a desirable trait, consider a program that has a requirement to print
out a customer ID after the customer's name:

Example_Functional_3.ts

1 const customer = {id: 1234, name: 'Amalgamated Materials'}
2
3 const formatForPrint = ()=> {
4 customer.name = `${customer.name} id: ${customer.id}`;
5 };
6
7 formatForPrint();
8
9 console.log(customer.name);

Link to the preceding example: https://packt.link/TX81Z

This program does as expected. When the customer's name is printed out, it has the
ID behind it; however, we've actually changed the name in the customer object:

Amalgamated Materials id: 1234

What happens If formatForPrint is called repeatedly? With a minor refactor, our
code is much safer and more consistent:

const customer = {id: 1234, name: 'Amalgamated Materials'}

const formatForPrint = ()=> {

 return `${customer.name} id: ${customer.id}`;

};

console.log(formatForPrint());

The output is as follows:

Amalgamated Materials id: 1234

It would be even better to pass in the customer object rather than having
formatForPrint access it in a higher scope.

TypeScript supports both functional programming and object-oriented paradigms.
Many applications borrow from both.

https://packt.link/TX81Z

Organizing Functions into Objects and Classes | 133

Organizing Functions into Objects and Classes
Sometimes, it makes sense to organize functions into member functions of objects
and classes. These concepts will be addressed in greater detail in Chapter 4, Classes
and Objects, but for now we can examine how we take a function declaration and add
it to an object or class.

Let's take a simple function:

Example_OrganizingFuncs_1.ts

1 function addTwoNumbers(a: number, b: number) { return a + b; }

If we wanted to have an object that contains a number of math functions, we could
simply add the following function to it:
2 const mathUtils = {
3 addTwoNumbers
4 };
5
6 console.log(mathUtils.addTwoNumbers(3, 4));

Link to the preceding example: https://packt.link/qX1QO

The output is as follows:

7

Note that the syntax used in the mathUtils object is shorthand, meaning the left
and right side of the assignment are the same. This could also be written like this:

Example_OrganizingFuncs_2.ts

5 const mathUtils = {
6 addTwoNumbers: addTwoNumbers
7 };

We also have the option of defining the method inline with a function expression:

5 const mathUtils = {

6 addTwoNumbers: function(a: number, b: number) { return a + b; }

7 };

Link to the preceding example: https://packt.link/Ew4vi

The output in either case will be as follows:

7

https://packt.link/qX1QO
https://packt.link/Ew4vi

134 | Functions

Remember that function expressions are usually the best thing to use in objects
because they will have the correct this reference. In the case of our mathUtils
object, we aren't using the this keyword, so an arrow function could be used, but
bear in mind that if, later on, another developer refactors this object, they might not
think to change from an arrow function to a function expression and you might wind
up with buggy code.

Adding functions to classes can be done in exactly the same way and, in fact, the
syntax is very similar. Let's say we want to use a class instead of a plain object and we
want to define addTwoNumbers inline. The MathUtils class might look something
like this:

class MathUtils {

 addTwoNumbers(a: number, b: number) { return a + b; }

};

Now that we're using a class, in order to call the function, we need to instantiate
an object:

const mathUtils = new MathUtils();

console.log(mathUtils.addTwoNumbers(3, 4));

The output is as follows:

7

For more information on classes, see Chapter 4, Classes and Objects.

Exercise 3.07: Refactoring JavaScript into TypeScript

Updating older JavaScript code to TypeScript isn't difficult. If the original code was well
written, we can retain much of the structure, but enhance it with interfaces and types.
In this exercise, we will use an example legacy JavaScript code that prints the area of
various shapes given the dimensions:

Note

The code file for this exercise can be found at https://packt.link/gRVxx.

https://packt.link/gRVxx

Organizing Functions into Objects and Classes | 135

1. Start with the following legacy code and make some decisions about what we'd
like to improve by converting it to TypeScript:

var PI = 3.14;

function getCircleArea(radius) {

 return radius * radius * PI;

}

//...

Note

Only a section of the actual code is presented here. You can find the
complete code at https://packt.link/pahq2.

A few of the changes are easy. We'll substitute var with const. The functions
that determine area are pretty good, but getArea mutates the shape objects. It
would be better to just return the area. All of our shapes are pretty well defined,
but they would be improved with interfaces.

2. Let's create some interfaces. Create a new file in VS Code and save it as
refactor-shapes-solution.ts.

3. First, create a Shape interface that includes an enumerated type and an
area property. We can extend our Circle, Square, Rectangle, and
RightTriangle interfaces from that one:

const PI = 3.14;

interface Shape {

 area?: number;

 type: 'circle' | 'rectangle' | 'rightTriangle' | 'square';

}

interface Circle extends Shape {

 radius: number;

 type: 'circle';

}

interface Rectangle extends Shape {

 length: number;

 type: 'rectangle';

 width: number;

}

interface RightTriangle extends Shape {

https://packt.link/pahq2

136 | Functions

 base: number;

 height: number;

 type: 'rightTriangle';

}

interface Square extends Shape {

 type: 'square';

 width: number;

}

4. Now, let's improve and simplify getArea. Instead of accessing properties on
each shape, getArea can simply pass the shape to the correct function to
determine the area and then return the calculated value:

const getArea = (shape: Shape) => {

 switch (shape.type) {

 case 'circle':

 return getCircleArea(shape as Circle);

 case 'rectangle':

 return getRectangleArea(shape as Rectangle);

 case 'rightTriangle':

 return getRightTriangleArea(shape as RightTriangle);

 case 'square':

 return getSquareArea(shape as Square);

 }

};

This change requires that we make minor changes to all the functions that
calculate area.

5. Instead of each individual property being passed in, now pass in the shape and
then grab the props inside the functions:

const getCircleArea = (circle: Circle): number => {

 const { radius } = circle;

 return radius * radius * PI;

};

const getRectangleArea = (rectangle: Rectangle): number => {

 const { length, width } = rectangle;

 return length * width;

};

const getSquareArea = (square: Square): number => {

 const { width } = square;

 return getRectangleArea({ length: width, type: 'rectangle', width

Organizing Functions into Objects and Classes | 137

});

};

const getRightTriangleArea = (rightTriangle: RightTriangle): number
=> {
 const { base, height } = rightTriangle;

 return (base * height) / 2;

};

This pattern is very common among modern web app development and works
very well in TypeScript development.

6. Add some type hints to our object declarations:

const circle: Circle = { radius: 4, type: 'circle' };

console.log({ ...circle, area: getArea(circle) });

const rectangle: Rectangle = { type: 'rectangle', length: 7, width: 4
};
console.log({ ...rectangle, area: getArea(rectangle) });

const square: Square = { type: 'square', width: 5 };

console.log({ ...square, area: getArea(square) });

const rightTriangle: RightTriangle = {

 type: 'rightTriangle',

 base: 9,

 height: 4,

};

console.log({ ...rightTriangle, area: getArea(rightTriangle) });

7. Running the program yields the correct output:

{ radius: 4, type: 'circle', area: 50.24 }

{ type: 'rectangle', length: 7, width: 4, area: 28 }

{ type: 'square', width: 5, area: 25 }

{ type: 'rightTriangle', base: 9, height: 4, area: 18 }

This exercise provided us with practical experience in refactoring legacy JavaScript
code into TypeScript. These skills can help us to identify what constituted code quality
problems in the original JavaScript code and improve them as we move the code
to TypeScript.

138 | Functions

Import, Export, and Require
Very small programs, such as the kind often found in books on programming, can
work just fine with all the code in a single file. Most of the time, applications will
be made up of multiple files, often referred to as modules. Some modules may
be dependencies installed from Node Package Manager (npm) and some may be
modules you or your team have written. When you look at other projects, you may
see the keywords import, export, module, and require used to link different
modules together. import and require both serve the same purpose. They allow
you to use another module in the module (file) you are currently working in. export
and module are the opposite. They allow you to make part or all of your module
available for other modules to use.

We'll go over the different syntax options here. The reason for multiple ways to do
things has, as usual, to do with the way the languages and runtimes have evolved.
Node.js is by far the most popular runtime for server-side JavaScript, and this is
where most of our compiled server-side TypeScript will run. Node.js was released in
2009 and, at that time, there was no standard module system for JavaScript. Many
JavaScript web applications at that time would simply attach functions and objects to
the global window object. This could work fine for web applications, since the window
object is refreshed upon loading the page and exists in the web browser, so it's only
used by a single user.

Although there is a global object in Node.js, this is not a practical way to link modules
together. Doing so would risk one module overwriting another, memory leaks,
exposing customer data, and all manner of other catastrophes. The great thing
about the module system is that you can share only the bits of your module that you
intend to.

Because there was a need for a more robust solution, Node.js adopted the
CommonJS spec and the module and require keywords. module is used to share
all or part of your module and require is used to consume another module. These
keywords were standard in Node.js for many years until ECMAScript 6 introduced the
import and export syntax. The latter has been supported in TypeScript for many
years and is preferred, although the require syntax is still valid and can be used.

Import, Export, and Require | 139

This book will use import and export syntax, as this is standard. The examples
that follow will use this syntax, but will also feature the require syntax as a
comment so readers can compare.

Any file with the import or export keyword is considered to be a module. Modules
may export any variables or functions they declare, either as part of the declaration
or by explicitly doing so:

// utils.ts

export const PI = 3.14;

export const addTwoNumbers = (a: number, b: number): number => a + b;

That is equivalent to explicit exports. Here is the complete code for utils.ts:

Example_Import_Exports/utils.ts

1 // utils.ts
2 const PI = 3.14;
3
4 const addTwoNumbers = (a: number, b: number): number => a + b;
5
6 export { PI, addTwoNumbers };
7 // module syntax:
8 // module.exports = { PI, addTwoNumbers };

Link to the preceding example: https://packt.link/3FEbm

We can now import our exports into another module (another .ts file – app.ts):

Example_Import_Exports/app.ts

1 // app.ts
2 import { PI, addTwoNumbers } from './utils';
3 // require syntax:
4 // const { PI, addTwoNumbers } = require('./utils');
5 console.log(PI);
6 console.log(addTwoNumbers(3, 4));

Link to the preceding example: https://packt.link/ozz9N

https://packt.link/3FEbm
https://packt.link/ozz9N

140 | Functions

Once you run app.ts, you will obtain the following output:

3.14

7

Note

The code files for the preceding example can be found here:
https://packt.link/zsCDe

Modules that are part of our application are imported via the relative path from the
root of the project. Modules that are imported from our installed dependencies are
imported by name. Note that the file extension is not part of the required path, just
the filename.

Modules can also have default exports that use the default keyword. Default
exports are imported without brackets. Consider the following examples:

Example_Import_Export_2/utils.ts

1 // utils.ts
2 const PI = 3.14;
3 const addTwo = (a: number, b: number): number => {
4 return a + b;
5 };
6 const fetcher = () => {
7 console.log('it is fetched!');
8 };
9 export default { addTwo, fetcher, PI };

Link to the preceding example: https://packt.link/h3R4r

The code for app.ts is as follows:
1 // app.ts
2 import utils from './utils';
3 console.log(utils.addTwo(3, 4));

Link to the preceding example: https://packt.link/oamFn

Once you run the app.ts file, you will get the following output:

7

https://packt.link/zsCDe
https://github.com/PacktWorkshops/The-TypeScript-Workshop/tree/master/Chapter03/Examples/Example_Import_Export
https://packt.link/h3R4r
https://packt.link/oamFn

Import, Export, and Require | 141

Exercise 3.08: import and export

Looking back at the last exercise, we have a single file that has a bunch of utility
functions, and then we have procedural code that establishes some objects, calls
the functions, and logs out the output. Let's refactor the result from Exercise 3.07,
Refactoring JavaScript into TypeScript to use the import and export keywords and
move those functions to a separate module:

Note

The code file for this exercise can be found at https://packt.link/2K4ds.
The first step of this exercise requires you to copy-paste some lines of
code to your exercise file. Hence, we suggest you either download the
code files from this repository or migrate it your desktop before you begin
this exercise.

1. Cut and paste the first 61 lines of shapes.ts into shapes-lib.ts. Your IDE
should start warning you that it can no longer find the relevant functions.

2. Look over the code in shapes-lib.ts. Which functions and interfaces need to
be exported? Square, circle, and the rest are utilized directly in shapes.ts, but
the shapes interface isn't, so only those four need to be exported. Likewise, the
PI constant is only used in shapes-lib.ts, so no need to export that one:

const PI = 3.14;

interface Shape {

 area?: number;

 type: 'circle' | 'rectangle' | 'rightTriangle' | 'square';

}

https://packt.link/2K4ds

142 | Functions

export interface Circle extends Shape {

 radius: number;

 type: 'circle';

}

export interface Rectangle extends Shape {

 length: number;

 type: 'rectangle';

 width: number;

}

export interface RightTriangle extends Shape {

 base: number;

 height: number;

 type: 'rightTriangle';

}

export interface Square extends Shape {

 type: 'square';

 width: number;

}

3. The only function that needs to be exported is getArea, as that's the only one
referenced in shapes.ts:

export const getArea = (shape: Shape) => {

 switch (shape.type) {

 case 'circle':

 return getCircleArea(shape as Circle);

 case 'rectangle':

 return getRectangleArea(shape as Rectangle);

 case 'rightTriangle':

 return getRightTriangleArea(shape as RightTriangle);

 case 'square':

 return getSquareArea(shape as Square);

 }

};

Import, Export, and Require | 143

4. Now, let's import the exported interfaces and function into shapes.ts. Your
IDE may assist you in this task. For example, in VS Code, if you hover over a
module that can be imported, it should ask you whether you'd like to add
the import:

import {

 Circle,

 getArea,

 Rectangle,

 RightTriangle,

 Square,

} from './shapes-lib-solution';

5. With all the imports and exports set, run the program again. You should get the
correct result:

{ radius: 4, type: 'circle', area: 50.24 }

{ type: 'rectangle', length: 7, width: 4, area: 28 }

{ type: 'square', width: 5, area: 25 }

{ type: 'rightTriangle', base: 9, height: 4, area: 18 }

One of the more challenging things about learning a new programming language is
how to structure modules. A good rule of thumb is to always be prepared to break
them into smaller chunks if they grow too large. This exercise helps us to understand
how we can separate our application logic from utilities or reusable functions, a
practice that will lead to clean, maintainable code.

Activity 3.01: Building a Flight Booking System with Functions

As a developer at a start-up for online bookings, you need to implement a system that
manages airline bookings. The architecture for this system has already been decided
upon. There will be a system for managing flights and seat availability on them and
a system for managing bookings. Users will interact directly with the booking system
and it, in turn, will search and update flight information.

144 | Functions

For the sake of keeping this activity to a manageable size, we'll abstract a number of
things, such as customer information, payments, the dates of flights, and even the
city of origin. In understanding the problem we need to solve, it can be very helpful to
create a diagram describing the flows we need to implement. The following diagram
shows the expected workflow for our user:

Note

The code files for this activity can be found here: https://packt.link/o5n0t.

Figure 3.1: Flows that need to be implemented in the flight booking system

https://packt.link/o5n0t

Import, Export, and Require | 145

Here's how the program flows:

1. Get a list of flights to choose from.

2. Start a booking with one of those flights.

3. Pay for the flight.

4. Complete the booking with seats reserved on the flight.

As the diagram shows, the user will interact with two different systems, a Bookings
system and a Flights system. In most scenarios, the user interacts with the Bookings
system, but they go directly to the Flights system to search for flights.

In this activity, these systems can be represented by a bookings.ts file and a
flights.ts file, which are two TypeScript modules. To complete the activity,
implement these two modules in TypeScript. Here are some steps to help you:

1. Since both the user and the Bookings system depend on the Flights system, start
with flights – flights.ts. As the activity is simplified, we can simply return a
list of destinations when the user wants to access flights. To allow access to the
bookings.ts module, we'll want to use the export keyword on a function.

2. Although the user has already fetched the flights, we need to check availability
before initiating a booking. This is because our system will have many users
and availability can change minute by minute. Expose a function for checking
availability and another to hold seats while the transaction is completed.

3. The process payment step really hints at a third system for payments, but we
won't include that system in this activity, so just mark the booking as paid when
the user gets to the payment step. The Flights system doesn't need to be aware
of payment status as that is managed by Bookings.

4. When we complete the booking, held seats convert to reserved seats. Our
booking is finalized and the seats are no longer available on the flight.

5. A typical output for such an activity would look like this:

Booked to Lagos {

 bookingNumber: 1,

 flight: {

 destination: 'Lagos',

 flightNumber: 1,

 seatsHeld: 0,

 seatsRemaining: 29,

 time: '5:30'

146 | Functions

 },

 paid: true,

 seatsHeld: 0,

 seatsReserved: 1

//...

Note

For ease of presentation, only a part of the actual output is shown here.
The solution to this activity can be found via this link.

There are many other scenarios here that could be explored. Try holding all
remaining seats, failing to start a new booking for that flight, and then complete
the original booking. That should work with the logic we've implemented here!
This exercise uses several functions to create a cohesive program. It uses closures,
currying, functional programming concepts, and the import and export keywords
to share functions between modules.

Unit Testing with ts-jest
Large systems require constant testing to ensure they are correct. This is where unit
testing comes in. Some of the biggest software projects in the world have hundreds of
millions of lines of code and thousands of features and views. It's simply not possible
to manually test every feature. This is where unit tests come in. Unit tests test the
smallest unit of code, often a single statement or function, and give us quick feedback
if we've done something to change the behavior of an application. Short feedback
cycles are a developer's best friend and unit tests are one of the most powerful tools
to achieve them.

There are many testing frameworks that can help us to unit test our code. Jest
is a popular testing framework from Facebook. You may also come across other
frameworks, such as Jasmine, Mocha, or Ava. Jest is a "batteries included" framework
that will seem familiar to users of those other frameworks as it has tried to
incorporate the best features of all of them.

Jest, Mocha, Ava, and the rest are JavaScript libraries, not TypeScript libraries, and so
some special preparation is required to use them. ts-jest is a library that helps us
to write TypeScript tests written in TypeScript and to use the Jest test runner and all
the good parts of Jest.

Unit Testing with ts-jest | 147

To get started, we'll install jest, ts-jest, and typings for jest (@types/
jest):

npm install -D jest ts-jest @types/jest

Once the library is installed, we can use npx to initialize ts-jest with a default
configuration that will let us write our first test:

npx ts-jest config:init

Running this command will create a config file called jest.config.js. As you
become more comfortable writing tests with Jest, you may wish to modify this file, but
for now, the default will work just fine.

Some developers put unit tests in a tests directory, and some put the tests directly
alongside the source code. Our default Jest config will find both kinds of tests. The
convention for unit tests is the name of the module under test, followed by a dot,
then the word spec or test, and then the file extension, which will be ts in our
case. If we create files with that naming convention anywhere under our project root,
Jest will be able to find and execute the tests.

Let's add a simple test. Create a file named example.spec.ts. Then add this code
to the file. This code is just a placeholder for the test and doesn't actually do anything
other than verify that Jest is working correctly:

describe("test suite for `sentence`", () => {

 test("dummy test", () => {

 expect(true).toBeTruthy();

 });

});

We can run Jest by typing npx jest at the console or we can add an npm script. Try
typing npm test at the console. If you haven't changed the default test, you should
see something like the following:

npm test

> ex1@1.0.0 test /Users/mattmorgan/typescript/function-chapter/exercises

> echo "Error: no test specified" && exit 1

Error: no test specified

npm ERR! Test failed. See above for more details.

148 | Functions

Let's now update the package.json file so that it runs Jest instead of just failing.
Find the package.json file and you'll see this configuration inside it:

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

We can replace the entire test with simply jest:

 "scripts": {

 "test": "jest"

 },

Now, try npm test again:

npm test

> ex1@1.0.0 test /Users/mattmorgan/typescript/function-chapter/exercises

> jest

 PASS ./example.spec.ts

 test suite for `sentence`

 ✓ dummy test (1ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 1.449s

Ran all test suites

Of course, this test doesn't do anything useful. Now, let's import the functions we
want to test and write some tests that are actually useful. First, let's clean up the
arrow-cat-solution.ts file (from Exercise 3.03, Writing Arrow Functions) a
little. We can remove all the console statements because we're going to validate our
code by writing tests, not by just logging the console. Then, let's add the export
keyword to each of the functions so that our test can import them. arrow-cat-
solution.ts now looks like this:

export const arrayToAnd = (words: string[]) => {

 return words.reduce((prev, curr, index) => {

 if (words.length === 1) {

 return ` ${curr}`;

 }

Unit Testing with ts-jest | 149

 if (words.length - 1 === index) {

 return `${prev} and ${curr}`;

 }

 return `${prev} ${curr},`;

 }, "");

};

export const capitalize = (sentence: string) => {

 return `${sentence.charAt(0).toUpperCase()}${sentence

 .slice(1)

 .toLowerCase()}`;

};

export const sentence = (

 subject: string,

 verb: string,

 ...objects: string[]

): string => {

 return capitalize(`${subject} ${verb}${arrayToAnd(objects)}.`);

};

Let's try writing a test for the capitalize function. We simply need to call the
function and test the outcome against the expected outcome. First, import the
function in a new file (arrow-cat-solution.spec.ts):

import { capitalize } from './arrow-cat-solution';

Then, write an expectation. We expect our function to turn all-caps "HELLO" into
"Hello". Let's now write that test and execute it:

describe("test suite for `sentence`", () => {

 test("capitalize", () => {

 expect(capitalize("HELLO")).toBe("Hello");

 });

});

Did it work?

npm test

> ex1@1.0.0 test /Users/mattmorgan/typescript/function-chapter/exercises

> jest

 PASS ./example.spec.ts

150 | Functions

 test suite for `sentence`

 ✓ capitalize (1ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 0.502s, estimated 2s

Ran all test suites.

The describe keyword is used to group tests and its only purpose is to affect the
output of your test report. The test keyword should wrap the actual test. Instead
of test, you can write it. Tests that use it are often written as an assertion
with should:

 it("should capitalize the string", () => {

 expect(capitalize("HELLO")).toBe("Hello");

 });

Now, write tests for the other functions.

Activity 3.02: Writing Unit Tests

In the last activity, we built a booking system for airlines and applied TypeScript
functions to the scenarios involved in securing a flight reservation. We executed these
scenarios from a single index.ts file, representing user interactions. This approach
works well enough while we're learning, but it's a bit messy and doesn't actually
assert that any of the scenarios are correct. To put that another way, it's almost a unit
test, but it's not as good as a unit test.

We've learned about how to install Jest, so let's use it to unit test Activity 3.01, Building
a Flight Booking System with Functions. For each function we wrote, we'll write a test
that invokes the function and tests the output:

Note

The code files for this activity can be found at https://packt.link/XMOZO.

https://packt.link/XMOZO

Unit Testing with ts-jest | 151

1. The code stubs provided for this activity include bookings.test.ts and
flights.test.ts with a number of unimplemented tests. Implement those
tests to complete this activity.

You can execute the tests by running npm test. You can also run just the
solutions with npm run test:solution.

2. To test a function, you will need to import it into your test file.

3. Invoke the function with sample input, and then use Jest's expect assertions to
test the output, for example, expect(value).toBe(5);.

4. Error scenarios can be tested with try/catch blocks, catching the error thrown
by the function, and then testing the error condition. When using catch in a
unit test, it's a best practice to use expect.assertions to indicate how many
assertions you want to test. Otherwise, your test might complete without the
catch block being invoked.

5. Try to reach 100% line coverage in the coverage report (already configured
with --coverage).

Note

The solution to this activity can be found via this link.

In this activity, we took a program we'd written and applied best practices with
some good unit tests. It will now be much easier to add additional functionality and
scenarios knowing that the existing code is tested. Instead of writing out an index file
to call various functions, we now have things logically grouped, ordered, and tested.
We have a mechanism to track line coverage and understand how much of our code
is under test.

152 | Functions

Error Handling
When we write functions, we need to bear in mind that not everything always works
perfectly. What will we do if the function receives unexpected input? How will our
program react if some other function that we need to call doesn't work perfectly? It's
always a good idea to validate function input. Yes, we're using TypeScript, and we
can be reasonably sure that if we expect a string, we won't get an object instead, but
sometimes, external input doesn't conform to our types. Sometimes, our own logic
may be erroneous. Consider this function:

const divide = (numerator: number, denominator: number) => {

 return numerator / denominator;

}

It looks fine, but what if I pass in the number 0 as the denominator? We cannot
divide by zero, and so the result will be the constant, NaN. NaN, when used in any
mathematical equation, will always return NaN. This could introduce a serious bug
into our system, and this needs to be avoided.

To solve this problem, we need to figure out what should happen if we get invalid
input. Log it? Throw an error? Just return zero? Exit the program? Once that is
decided, we can add some validation to our function:

const divide = (numerator: number, denominator: number) => {

 if(denominator === 0) {

 throw 'Cannot divide by zero!'

 }

 return numerator / denominator;

}

Now at least we won't fail silently as we are displaying a warning on the screen,
Cannot divide by zero!. It's always better to raise an exception than for a
function to fail without anybody noticing.

Summary | 153

Summary
By now, you know how to create the most important building blocks of any TypeScript
program – functions. We have explored the difference between function expressions
and arrow functions and when to use which. We looked at immediately invoked
function expressions, closures, currying, and other powerful TypeScript techniques.

We talked about functional programming paradigms and looked at how to include
functions in objects and classes. We've looked at how to convert legacy JavaScript
code into modern TypeScript and how we can improve our software by doing so.

We have had an overview of the TypeScript module system and the critically
important import and export keywords. We wrote a lot of our own TypeScript
code and learned how to test it with ts-jest.

Finally, we rounded out this chapter with a discussion of error handling. We'll
look at more advanced error-handling techniques in Chapters 12, Guide to
Promises in TypeScript, and Chapter 13, Async Await in TypeScript, when it comes
to asynchronous programming.

We covered quite a few topics in this chapter, and most readers won't retain all of
them immediately. That's OK! You have written a number of functions in this chapter
and you'll write many more in chapters to come. Writing good functions is a skill that
comes with practice and you'll be able to refer back to this chapter to check your
learning as you progress in your mastery of TypeScript.

In the next chapter, we will further explore the object-oriented
programming paradigm by studying the class keyword and how we
can construct type-safe objects.

Overview

In this chapter, you will learn how to define classes and instantiate them
to create objects. You will also learn how to define the data types that can
be passed to a class using interfaces. By the end of this chapter, you will
be able to build a basic class that includes data attributes, a constructor,
methods, and an interface. You will be able to create classes that take in
multiple objects as arguments to build dynamic behavior and confidently
use TypeScript to generate HTML code.

Classes and Objects

4

156 | Classes and Objects

Introduction
Object-Oriented Programming (OOP) has been around since the 1960s and many
popular programming languages utilize it, including Java, Ruby, and Python. Prior
to OOP, developers typically followed the procedural programming style. Languages
that utilize procedural programming processes run from the top of the code file to
the bottom. Eventually, developers started wanting to wrap entire processes and data
so that they could be called from different parts of a program at different times. And
that's how OOP was born.

From a high-level perspective, OOP allows programs to wrap data and behavior
together to create complete systems. So, instead of programs running code from top
to bottom, as with procedural programs, OOP programs allow you to create code
blueprints and establish rules for how a program will run, and then you can call those
blueprints from other parts of an application.

Don't worry if that doesn't make sense quite yet – we're going to walk through exactly
how to work with OOP in TypeScript in this chapter. And we're going to start by
learning about the fundamental building blocks of OOP – classes and objects.

In the previous chapters, we've covered a wide assortment of topics, including various
ways to declare variables, how to work with advanced types, aliases, union types, and
assertions, and how to check for types. You've already added quite a bit of knowledge
to your TypeScript skill set.

In this chapter, we're going to build a scoreboard application in TypeScript and will
be learning about classes and objects along the way. Do not worry if you have no
previous knowledge or familiarity with OOP, or how it applies to TypeScript. If you
have some experience with classes and objects, then you can skip ahead to some of
the more advanced material later in the chapter – though you may still benefit from a
refresher on these key concepts.

What Are Classes and Objects?
Before we build out our class, let's take a step back and understand how classes
work. You can think of a class as a blueprint. It establishes a structure for what we
want to build and has some behavior inside it. Now, the class by itself does nothing.
It is simply a blueprint. In order to work with it, we have to perform a process
called instantiation.

What Are Classes and Objects? | 157

Instantiation is the process of taking a class and creating an actual object of the class
that we can use. Let's walk through an example to understand instantiation further.
Imagine that you're building a house and, like a good builder, you have a blueprint
of what you want to build. That blueprint is like our class. The blueprint for a home
is simply a set of rules, attributes, and behavior for a home. A blueprint for a house
defines elements such as square footage, the number of rooms, the number of
bathrooms, and where the plumbing goes. Technically, a blueprint is simply a set of
rules that are printed out or stored on a computer; it's not the house itself, or the
program itself, in this case. In order to create the house, someone needs to take the
blueprint and then actually build the house, and it's the same in programming.

A class by itself does nothing besides establishing the rules for the program. In
order to work with the class, we need to create an instance or object of that class.
So, returning to the building analogy, you can think of instantiation as taking the
blueprint for the house and building it.

Let's look at the following code snippet to understand how classes and objects appear
in TypeScript:

class Person {

 name:string;

 constructor(name) {

 this.name = name;

 }

 read() {

 console.log(this.name+ "likes to read.");

 }

}

const obj = new Person("Mike");

obj.read();

Let's walk through each of the elements in the preceding code so that you can
have a mental model of the key terminology associated with classes and objects in
TypeScript, and then we'll go through an in-depth exercise where you will see how to
work with each element:

• class Person {} creates or defines a class.

• name: string; creates the class attributes.

158 | Classes and Objects

• constructor() allows you to perform setup work for when an object
is created.

• read() is a method that allows you to implement custom behavior in a class.

• const obj = new Person("Mike"); creates an object from a class and
stores it in a variable so that it can be used.

• obj.read(); calls a method on an object. In this example, it would console log
out the value Mike likes to read.

In the next section, we will solve an exercise wherein we'll be building our first
TypeScript class.

Exercise 4.01: Building Your First Class

In this exercise, we'll build a class named Team and add a behavior or method named
generateLineup inside it. We'll also create an object of this class and access its
method. Perform the following steps to implement this exercise:

Note

The code files for this exercise can be found here: https://packt.link/UJXSY.

1. Open the Visual Studio Code editor.

2. Create a new directory and then a new file called scoreboard.ts. You will
be running the TypeScript compiler on it to have it generate a JavaScript file
as well. Add the following command in the TypeScript compiler to generate a
JavaScript file:

tsc scoreboard.ts

Once this command is executed, a scoreboard.js file is generated, as you
can see in the following screenshot:

Figure 4.1: TypeScript scoreboard and generated JavaScript files

https://packt.link/UJXSY

What Are Classes and Objects? | 159

3. Now, create a class called Team, and then utilize the instantiation process to
create an object of that class. Write the following code inside the scoreboard.
ts file to create a class:

class Team {

}

Right now, this is simply an empty class that doesn't do anything. Let's fix that by
adding some behavior to the class. We can add behavior by defining functions.
For our Team class, we're going to generate a lineup, so we define a function
called generateLineup, and it doesn't take in any arguments.

Note

From a syntax perspective, notice that we're using the class keyword.
The term class is a reserved word in TypeScript and JavaScript, and
it tells the compiler that we're about to define a class. In this case, we're
calling the Team class.

4. Write the following code to define a generateLineup() function inside
the class:

class Team {

 generateLineup() {

 return "Lineup will go here…";

 }

}

As you can see, functions in classes, which are also referred to as methods,
look similar in syntax to standard functions in JavaScript. Now, our
generateLineup method simply returns a string. Later in the chapter, we'll
see how we can implement dynamic behavior in this method.

Once we've created a class and defined its behavior, we can create an object. In
order to create an object of the Team class, we call the new keyword in front of
the Team class name and assign that to a variable. In this case, we'll store the
instantiated object in a variable called astros.

160 | Classes and Objects

5. Add the following code to create an object of the Team class:

const astros = new Team();

Notice that in the preceding code, we're also adding parentheses after the Team
class name, mimicking how we call functions in TypeScript.

With all of this in place, we can now use the astros variable to call the
generateLineup method on it.

6. Add the following code to call the generateLineup method:

console.log(astros.generateLineup());

7. In the terminal, type the following commands to generate the JavaScript code
and run it:

tsc scoreboard.ts

node scoreboard.js

Once we run the preceding commands, the following output is displayed in the
terminal: Lineup will go here…

Hence, we've created our first class, and then from there, we've taken that class, that
blueprint, and then used instantiation to create an object. From that point, we're
able to call the method inside the class. Now that we've created a class and used
its object to access its methods, in the next section, we'll explore the concept of
the constructor.

Extending Class Behavior with a Constructor

In the previous section, we established the syntax for classes in TypeScript. Before we
get started with the next phase of the previous program, let's take a step back and
discuss an element that we're going to use, called the constructor. The concept of
constructors can be confusing if you've never used them before.

Returning to our blueprint/house analogy, if a class is like a home's blueprint
and an object is the home that is created, the constructor is the process of going
to the hardware shop and purchasing the materials needed to build the home.
A constructor is run automatically anytime that you create an object. Typically,
constructors are used to do the following:

• Set data for attributes, which we're about to explore.

What Are Classes and Objects? | 161

• Run any setup processes. Examples of this include calling outside APIs to get
data and communicating with a database.

Note

More on constructors will be covered in Chapter 8, Dependency Injection
in TypeScript.

The this Keyword

The concept of this is one of the most confusing aspects of OOP. The this keyword
refers to the instance of the class that is currently being executed. It has access to the
data and behavior of the created object. Let's say we have the following code within
a class:

constructor(name){

 this.name = name;

}

In the preceding code, if this.name is referring to the instance of the class and the
attribute of name, what does the name parameter in the constructor represent? In
order to use data in our class, we need to have a mechanism for passing data into the
object, and that's what the constructor parameters are doing. So, why do we need
to assign this.name to name? It does seem redundant; however, it is helpful for
understanding how variable scope works in TypeScript classes. We need to assign the
values passed into the object to this.attributeName so that the other methods
in the class can have access to the values. If we simply passed the value into the
constructor and didn't perform the this.name assignment, the other methods in
the class wouldn't have access to the name value. Now, let's extend the behavior of
the program in the next exercise, where we will explore the attributes of the class.

162 | Classes and Objects

Exercise 4.02: Defining and Accessing the Attributes of a Class

In this exercise, we'll add attributes to the Team class, which we created in the
previous exercise. We'll be using constructors to define and access the attributes of
the objects. Perform the following steps to implement this exercise.

Note

In this exercise, we'll continue the work we performed earlier in the chapter
with our Team class, so make sure to reference it as a starting point. The
code files for this exercise can be found here: https://packt.link/Diuyl.

We begin by listing the names of the attributes at the top of the Team class and then
we set the value with a constructor function by passing in a name parameter.
From there, we set the value of this.name to the value that gets passed into the
constructor function:

1. Write the following code to create a constructor function:

class Team {

 name: string;

 constructor(name) {

 this.name = name;

 }

 generateLineup() {

 return "Lineup will go here …";

 }

}

When we create the astros object, the this keyword represents the object
that was created.

2. Create another object to see how the this keyword works with multiple objects.
Add the following code to the scoreboard.ts file to create objects of the
Team class:

const astros = new Team();

console.log(astros.generatLineup());

const bluJays = new Team();

console.log(blueJays.generateLineup());

https://packt.link/Diuyl

What Are Classes and Objects? | 163

In the preceding code, we've created another Team class object called
blueJays. From there, we called the generateLineup method on the object.
When we say this.name, what we're referring to is the instance of the class.
This means that when we say this.name for the first object, we're referring to
the astros object. And then, for the new object we've created, this.name is
referencing the blueJays object.

Our generateLineup method has access to the value of name because we
assigned it in the constructor.

3. Pass values to the constructors of both the objects by writing the following code:

const astros = new Team("Astros");

console.log(astros.generateLineup());

const blueJays = new Team("Blue Jays");

console.log(blueJays.generateLineup());

Note

If you ever get asked the difference between parameters and arguments in
TypeScript, parameters are what you place inside the function's declarations
in your class. Arguments are what you pass to an object or a function.

In order to pass arguments to a class, you can pass them in the same way that
you do with functions, as you can see above. Additionally, when we perform an
assignment such as this.name = name, this means that when an object is
created, it can call the data value as well.

4. Write the following code to call the relevant data values:

const astros = new Team("Astros");

//console.log(astros.generateLineup());

console.log(astros.name);

const blueJays = new Team("Blue Jays");

//console.log(blueJays.generateLineup());

console.log(blueJays.name);

164 | Classes and Objects

5. In the terminal, type the following commands to generate the JavaScript code
and run it:

tsc scoreboard.ts

node scoreboard.js

Once we run the preceding commands, the following output is displayed in
the terminal:

Astros

Blue Jays

As you can see in the code in the previous step, when we call astros.name, this
outputs the name value that was passed into the instantiated object. When we
pass the name value Blue Jays into the new object, the new value is printed in
the terminal.

We are now able to understand the basic workings of classes and objects. We've also
learned how to pass data into an object via a constructor. Now it's time to extend that
knowledge and see how we can integrate types directly into our classes.

Even though the current implementation works, we're not taking advantage of the
key benefits that TypeScript offers. In fact, the current implementation is very close
to how you would build a class in vanilla JavaScript. By using types in classes, we can
define exactly how to work with the code, which will help to make our code more
manageable and scalable.

A real-world example of this would be a React application that utilizes TypeScript
versus vanilla JavaScript. One of the most common errors that developers run into is
passing the wrong type of data to a class or method, resulting in an error for the user.
Imagine accidentally passing a string to a class that requires an array. When the user
tries to access the page that is associated with that class, they won't see any data, as
the wrong data was passed to the method.

When you utilize TypeScript and types in a React class, the text editor won't allow the
program to even compile as it will explain to you exactly what type of data is required
by each class and process. In the next section, we'll solve an exercise wherein we'll
integrate different types into our class.

What Are Classes and Objects? | 165

Exercise 4.03: Integrating Types into Classes

In this exercise, we'll add another attribute named players inside our Team class.
This parameter takes arrays of strings. Perform the following steps to implement
this exercise:

Note

We'll continue the work we performed in the previous exercise with our
Team class, so make sure to reference it as a starting point. The code files
for this exercise can be found here: https://packt.link/tbav7.

1. Open the scoreboard.ts file.

2. Inside the Team class, declare another attribute named players, which takes
arrays of strings. Write the following code to declare the string array:

players: string[];

3. Update the constructor function by adding the name and players
parameters. Set the values of the name and players parameters to this.
name and this.players, respectively. Write the following code to update our
constructor function:

constructor(name, players){

 this.name = name;

 this.players = players;

}

4. Update the generateLineup() method so that it joins the player names that
will get passed into the object. This method will return a plain string. Here is the
updated code of the generateLineup() method:

generateLineup(){

 return this.players.join(", ");

}

https://packt.link/tbav7

166 | Classes and Objects

5. Create two arrays of players, namely, astrosPlayers and
blueJaysPlayers. Assign four player names to each array and pass those
arrays as second arguments to the Team class objects. Write the following code
to accomplish this:

const astrosPlayers = ["Altuve", "Bregman", "Correa", "Springer"];

const astros = new Team("Astros", astrosPlayers);

console.log(astros.generateLineup());

console.log(astros.name);

const blueJaysPlayers = ["Vlad", "Smoak", "Tellez", "Sogard"];

const blueJays = new Team("Blue Jays", blueJaysPlayers);

console.log(blueJays.generateLineup());

console.log(blueJays.name);

6. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc scoreboard.ts

node scoreboard.js

Once we run the preceding commands, the following output is displayed in
the terminal:

Altuve, Bregman, Correa, Springer

Astros

Vlad, Smoak, Tellez, Sogard

Blue Jays

We've now integrated types into our Team class. If you're able to view the names that
you passed to the class in the console, this means that you're working with the class
and their types properly. In the next section, we'll learn why interfaces are needed
and how they are useful.

TypeScript Interfaces | 167

TypeScript Interfaces
We'll go through a deep dive into TypeScript interfaces in the next chapter. But for
now, just know that an interface allows you to describe the data passed to a class
when you're creating an object. In the previous exercise code, if we hover over the
Team class on Visual Studio Code, we get the following message:

Figure 4.2: Vague IntelliSense guidance

As you can see in the preceding screenshot, the Visual Studio Code editor's
IntelliSense is saying that the players parameter uses the any data type. It's
not giving us any usage hints here, and this starts to speak to the reason why we
need interfaces, because right now, the players array could be anything. It could
be a string, it could be an object, and so on. This is essentially breaking one of the
main benefits of using TypeScript in the first place. Ideally, our programs should be
declarative to the point that we know exactly what type of data should be passed to
our functions and classes. We're going to leverage interfaces in order to do that. The
way you define an interface is by starting with the interface keyword followed by
the name of the interface. The common convention in the TypeScript community is to
start with a capital I, followed by whatever class you're building the interface for.

Once we have created the interface and update the constructor, we'll establish a way
of defining our arguments and our types. This will break any of the previously created
objects with the old argument syntax since the previous arguments no longer match
up with our new interface. In the next section, we'll complete an exercise wherein
we'll build an interface.

168 | Classes and Objects

Exercise 4.04: Building an Interface

In this exercise, we'll build an interface and set the types of data that need to be
passed to our functions and classes. Perform the following steps to implement
this exercise:

Note

We'll continue the work we performed in the previous exercise with our
Team class, so make sure to reference it as a starting point. The code files
for this exercise can be found here: https://packt.link/FWUA6.

1. Open the scoreboard.ts file.

2. Create an interface named ITeam and list out the attributes and data types with
the same key/value syntax that you would use with an object. Write the following
code to create an interface:

interface ITeam{

 name: string;

 players: string[];

}

3. Inside our Team class, alter the parameter list in the constructor function so
that the data is passed in as a single object that is of the ITeam type. Write the
following code to accomplish this:

constructor(args: ITeam){

 this.name = args.name;

 this.players = args.players;

}

Notice in the preceding code that, instead of listing out each of the parameters
separately, we're declaring the exact structure that is needed for a Team object
to be created. From that point, we're calling the name and players values from
the args parameter since our parameter list has now been refactored to use a
single argument.

https://packt.link/FWUA6

TypeScript Interfaces | 169

4. Create an object of the Team class by writing the following code:

const astros = new Team();

Now notice what happens when we hover over the parentheses. It says that it
expected one argument but got zero. Look at the following screenshot to view
the message:

Figure 4.3: IntelliSense listing out the arguments needed by the class

5. Let's update how we create the objects. Start typing in the name attribute. Write
the following code to create the object:

const astros = new Team({

 name

})

After adding in the name argument, we'll see the following error:

Figure 4.4: IntelliSense describing the data types needed to create the object

If you hover over the name attribute, you can see that TypeScript is helping us
understand the other arguments we need to pass in, because the players
property is missing. So, this is already giving us so much more information on
how our class needs to work.

170 | Classes and Objects

6. Now, pass the values for both the attributes, name and players, and update
the values for both the objects, astros and blueJays. Write the following
code to accomplish this:

const astrosPlayers = ["Altuve", "Bregman", "Correa", "Springer"];

const astros = new Team({

 name: "Astros",

 players: astrosPlayers

});

console.log(astros.generateLineup());

console.log(astros.name);

const blueJaysPlayers = ["Vlad", "Smoak", "Tellez", "Sogard"];

const blueJays = new Team({

 name: "Blue Jays",

 players: blueJaysPlayers

});

console.log(blueJays.generateLineup());

console.log(blueJays.name);

7. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc scoreboard.ts

node scoreboard.js

Once we run the preceding commands, the following output is displayed in
the terminal:

Altuve, Bregman, Correa, Springer

Astros

Vlad, Smoak, Tellez, Sogard

Blue Jays

We've now built an interface and set the types of data that need to be passed to our
functions and classes. Although we got the same output as we got in the previous
exercise, we are now aware of what type of data needs to be passed to our functions
and classes.

Generating HTML Code in Methods | 171

Another great benefit of using interfaces and object-based arguments with classes
is that the arguments do not have to be in a specific order. You can pass in the keys
in any order that you want, and the class can still parse them properly. If you use
standard parameter names, you'll always need to know the order to pass arguments
to the class and function.

Generating HTML Code in Methods
Now that we have learned how to build an interface and have the ability to pass data,
along with having some help from IntelliSense in knowing the types of data that we're
passing in, we can actually generate some HTML. It's fun to see the code we write
generate its own code. Part of the reason why we chose to include this example is
that this is very close to the same type of process that you will be using when building
React JS or Angular applications. At their very core, the goal of a standard React app is
to leverage JavaScript/TypeScript code to render HTML code that can be rendered to
the user.

In the next section, we'll complete an exercise wherein we generate HTML code and
view it in the browser.

Exercise 4.05: Generating and Viewing HTML Code

In this exercise, we will generate some HTML by cleaning up some of the code.
We'll get rid of the name attribute and the interface. Perform the following steps to
implement this exercise:

Note

We'll continue the work we performed in the previous exercise with our
Team class, so make sure to reference it as a starting point. The code files
for this exercise can be found here: https://packt.link/Bz5LV.

1. Open the scoreboard.ts file.

2. Inside the Team class, declare the players array and create a constructor
function. Write the following code to implement this:

players: string[];

constructor(players){

 this.players = players;

}

https://packt.link/Bz5LV

172 | Classes and Objects

3. Update the generateLineup() function by writing the following code:

generateLineup(): string{

 const playersWithOrderNumber =

 this.players.map((player, idx) => {

 return `<div>${idx + 1} - ${player}</div>`;

 });

 return playersWithOrderNumber.join("");

}

The map function is a helpful iterator tool that loops over the player array. You
can pass it as a function that performs some type of operation. In the preceding
code, the line `<div>${idx + 1} – ${player}</div>` states that in
every iteration, each player's data is wrapped inside the HTML code. Also, each
element that is returned is stored in a new array, playersWithOrderNumber.

Note

Notice the return type that we've declared for the generateLineup
method. This means that we're telling the TypeScript compiler that the
method will always return a string value. The reason why this is so
important is that if any other part of the application calls this method and
tries to perform a task that does not work with the string data type, they'll
get a clear error and recommendation on how to fix it.

4. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc scoreboard.ts

node scoreboard.js

Once we have run the preceding commands, the following output is displayed in
the terminal:

Figure 4.5: Output showing the lineup of players for both teams

In the preceding output, you'll see that we're getting HTML returned that prints
out the lineup of players for both teams.

But let's not stop here. Let's see what this looks like in the browser.

Generating HTML Code in Methods | 173

5. Save the generated code in an HTML file named index.html and view it in the
browser. The following output will be displayed in the browser:

Figure 4.6: Viewing the generated HTML code in the browser

Note

You may get a different image depending on your default browser; however,
the text displayed will be the same as listed in the preceding screenshot.

You can see that we have a full lineup of players for both teams. However, we have
not yet formatted the text on the page, and so it is difficult to ascertain the teams to
which the players belong unless you have access to the code. We will be enhancing
this page with more information and formatting as we progress in this chapter.

Note that we can pass the objects themselves to another class that will put them
together for us and generate a full scoreboard. In the next section, we'll learn how to
work with multiple classes and objects.

Working with Multiple Classes and Objects

In this section, we're going to learn how to create a class that combines other classes
to give us more advanced behavior. The reason why this is an important concept
to understand is that you will need to implement this type of behavior in many
different types of applications. For example, if you are building a contact form in a
React application, you might need to have classes for an API, form elements, form
validations, and other form features all working together. In the next section, we will
look at an exercise where we'll combine classes.

174 | Classes and Objects

Exercise 4.06: Combining Classes

In this exercise, we will be creating a scoreboard class that will allow us to pass in
objects and work with their data and behavior. This will allow us to take instantiated
objects that were created from other classes such as our Team class. Then, we're
going to add in some other behavior that will generate a full scoreboard that shows
off both the lineups along with the data. Perform the following steps to implement
this exercise:

Note

We'll continue the work we performed in the previous exercise with our
Team class, so make sure to reference it as a starting point. The code files
for this exercise can be found here: https://packt.link/UY5NP.

1. Open the scoreboard.ts file.

2. Create a Scoreboard class and list three attributes, namely, homeTeam,
awayTeam, and date. Here, homeTeam and awayTeam will be of the Team
type, and date will be of the string type. Write the following code to
accomplish this:

class Scoreboard{

 homeTeam: Team;

 awayTeam: Team;

 date: string;

}

In the preceding code, notice how we were able to call the Team class. This
is because when we create a class, we're able to treat that class like a type in
TypeScript. So, TypeScript now knows that our homeTeam and awayTeam data
attributes must be a Team object. The date attribute will represent the date
of the scoreboard. If we tried to pass in string, array, or anything else for a
Team object, the program would not compile.

3. Now that we know the type of data that our scoreboard needs to have, let's
create an interface for it. Write the following code to create an interface:

interface IScoreboard{

 homeTeam: Team;

 awayTeam: Team;

https://packt.link/UY5NP

Generating HTML Code in Methods | 175

 date: string;

}

This is similar to what we implemented with the ITeam interface, but with a nice
twist. Because our homeTeam and awayTeam attributes are not associated with
a basic data type such as string or number, we're letting the interface know
that these values are required to be objects of the Team class.

4. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc scoreboard.ts

When the preceding command is executed, the scoreboard.js file is created.

5. Open the scoreboard.js file and you'll see the following code at
the beginning:

Figure 4.7: Generated JavaScript that shows interfaces are only used by the text editor

In the preceding screenshot, what we're essentially doing here is almost like a
mini declaration file for this class. We're defining the shape of the class. If you
remember, those interfaces and those declaration files do not get compiled
down into JavaScript. You can confirm this by looking at the generated JavaScript
code in the preceding screenshot.

Now that we've defined the interface, we have essentially defined the shape of
our Scoreboard class.

6. Now we implement a constructor function, allowing the Scoreboard
class to know what parameters to expect when creating a new object. Write the
following code to accomplish this:

constructor(args: IScoreboard){

 this.homeTeam = args.homeTeam;

 this.awayTeam = args.awayTeam;

 this.date = args.date;

}

176 | Classes and Objects

With this in place, any functions inside our Scoreboard class can work with
these values.

7. Now let's create a function called scoreboardHtml() inside the
Scoreboard class. Write the following code to accomplish this:

scoreboardHtml(): string{

 return `

 <h1>${this.date}</h1>

 <h2>${this.homeTeam.name}</h2>

 <div>${this.homeTeam.generateLineup()}</div>

 <h2>${this.awayTeam.name}</h2>

 <div>${this.awayTeam.generateLineup()}</div>

 `;

}

In the preceding code, we have an <h1> heading tag for date and an <h2>
heading tag wrapping the team names. This is great, as even though the
Scoreboard class has no knowledge of the Team class, the IDE can let
us know that we have access to the name value. Lastly, we're able to call
the Team functions. So, inside the <div> tags wrapper, we're calling the
generateLineup() function of Team, which we know from earlier returns a
list of HTML elements. Also, notice that this function will always return a string
and that we're using backticks so that we can use string literals, which can
be dynamic.

Note

In TypeScript and JavaScript, string literals can be written on multiple lines,
which is not allowed with quotation marks.

8. Update the Team class with the name attribute and constructor function.
Write the following code to accomplish this:

name: string;

players: string[];

constructor(name, players){

 this.name = name;

 this.players = players;

}

Generating HTML Code in Methods | 177

9. To view the final scoreboard, first create two team objects followed by the
Scoreboard class object, and then pass in dates and both of our team objects
to it. Write the following code to accomplish this:

const astrosPlayers = ["Altuve", "Bregman", "Correa", "Springer"];

const astros = new Team("Astros", astrosPlayers);

//console.log(astros.generateLineup());

const blueJaysPlayers = ["Vlad", "Smoak", "Tellez", "Sogard"];

const blueJays = new Team("Blue Jays", blueJaysPlayers);

//console.log(blueJays.generateLineup());

const todaysGame = new Scoreboard({

 date: "5/24/19",

 homeTeam: astros,

 awayTeam: blueJays

});

console.log(todaysGame.scoreboardHtml());

10. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc scoreboard.ts

node scoreboard.js

Once we run the preceding commands, the following output is displayed in
the terminal:

Figure 4.8: Generated HTML code

178 | Classes and Objects

11. Add this code to an HTML file and view it in the browser. You will see that we
have a full scoreboard like the one shown in the following screenshot:

Figure 4.9: Generated code in the browser

Finally, we combined two classes, namely, Scoreboard and Team. In the
Scoreboard class, we created attributes of the Team type and added a few
behaviors that will help to generate a full scoreboard consisting of the lineups of
both teams.

So far, we've introduced classes and objects in TypeScript, and with this knowledge,
we're ready to move on to the code activity in the next section, where we will create a
user model.

Activity 4.01: Creating a User Model Using Classes, Objects, and Interfaces

In this activity, you will build a user authentication system that mimics how a
TypeScript application would pass login data to a backend API to register and sign
users into our baseball scorecard application. This will entail building multiple
TypeScript classes and combining classes and objects together to mimic an
authentication feature. Perform the following steps to implement this activity:

1. Visit the GitHub repository and download the activity project containing the
specs and configuration elements: https://packt.link/vJxBm.

https://packt.link/vJxBm

Generating HTML Code in Methods | 179

2. Open the Visual Studio Code editor.

3. Create a file called auth.ts.

4. Run the TypeScript compiler on the file and watch for changes.

5. Create a Login class that takes in an object containing the string attributes of
email and password.

6. Build an interface called ILogin that defines the email and
password attributes.

7. Pass it as a parameter to the constructor function.

8. Create an Auth class that takes in an object containing the attributes of user
and source.

9. Build an interface called IAuth that defines the user and source attributes
and pass it as the constructor function parameter. Have the user attribute
be of the Login type and the source attribute of the string type.

10. Add a validUser() method to the Auth class that returns true if email is
equal to admin@example.com and if password is equal to secret123.

11. Ensure that you can access the source attribute from the instantiated Auth
object and that it's a string.

12. Test the user model by first checking a valid user and then an invalid user.

The expected output should look something like this:

Validating user...User is authenticated: true

Validating user...User is authenticated: false

Note

The solution to this activity can be found via this link.

180 | Classes and Objects

Summary
Learning OOP development patterns for the first time can be a challenging task.
In this chapter, you learned about OOP development, how to define classes in
TypeScript, how to instantiate classes and create objects, how to combine data and
methods in a class to encapsulate a full set of behavior, how to utilize interfaces in
order to define the data that can be passed to a TypeScript class, and finally, how to
pass the objects to classes of various types.

You also now have a basic understanding of how an authentication system works and
how to utilize TypeScript to generate HTML code.

Now that you have a basic understanding of how classes and objects work in
TypeScript, in the next chapter, you'll learn how to work with the concept of class
inheritance and take a deeper dive into interfaces.

Overview

This chapter introduces you to interfaces and inheritance. You will learn
how to use an interface to shape your classes, objects, and functions. You
will also gain an appreciation of how interfaces will help you to write better
code. By the end of this chapter, you will be able to write better, more
maintainable code with well-structured functions, classes, and objects, and
also be able to reuse your existing code efficiently.

Interfaces and Inheritance

5

184 | Interfaces and Inheritance

Introduction
The previous chapter discussed classes and objects. You learned that classes define
objects and their functionality. Classes are the blueprint followed while constructing
these objects. Now, we will go up one level of abstraction. We are now going to
construct interfaces. Interfaces are descriptors and allow you to define the structure
of your object. Interfaces allow you to define contracts, which are rules that govern
how your data is shaped.

Interfaces are important because they enable your objects to be strongly typed,
which gives you the ability to write cleaner code. Defining the shape of your objects
may not be much of an issue with smaller applications, but when working with large
applications, interfaces will prove their worth as they will make it possible for your
application to scale without your code becoming confusing and hard to support.

Inheritance allows new objects to take the properties of existing objects, enabling
you to extend your code functionality without having to redefine common properties.
Inheritance will give you a better understanding of how you should structure your
code to be more efficient and logical in your approach. This chapter will first address
interfaces and equip you with the skills you need to use them and will then progress
onto the topic of inheritance.

Interfaces
Here we have an example of a simple interface that defines the shape of a
user object:

interface UserInterFace {

 email: string,

 token: string,

 resetPassword: ()=> boolean

}

Interfaces | 185

In the preceding code, we have defined an interface that we can implement on any
object that should follow rules defined in our interface. The advantage this gives us
over other web languages such as vanilla JavaScript is that all objects that implement
this interface have to follow the structure defined by the interface. This means
that our objects are now strongly typed and have language support such as syntax
highlighting, autocompletion, and the throwing of exceptions when implemented
incorrectly. If you are a developer working on a large application, this is very
important as you have defined the rules and can now be sure that all the objects
that implement UserInterFace will have the same properties as those defined in
the interface.

Here is an example of an object that implements the UserInterface interface:

const User: UserInterFace = {

 email: 'home@home.com',

 token: '12345678',

 resetPassword(): boolean{

 return true

 }

}

As you can see in the preceding example, we are now able to implement an object
that adheres to the guidelines defined in the UserInterFace interface. When
working with large teams or on complex web applications, it is important to have
transparent, well-understood rules for your code.

Interfaces allow for the creation of a common point of reference for your objects, a
place where rules are defined on how objects should be constructed. In the following
section, we will cover in-depth interfaces in TypeScript.

186 | Interfaces and Inheritance

Interfaces are used when you want to set up rules for how your objects, classes, and
functions should be implemented. They are a contract that governs structure but not
functionality. Here we have a diagram that shows an interface and its relationship to
two classes – User and Admin:

Figure 5.1: Relation between interface and classes

Interfaces | 187

In the diagram, we have a user interface that describes how a class belonging to
this interface should be implemented. As you can see, we have a few properties
(highlighted code in User Interface) and methods provided in two classes. The
interface provides only basic information for the property's name, type, method
structures, and return types, if not void. Note that the interface provides no
rules related to how the methods work, only how they are structured. The actual
functionality of the methods is defined in the class itself. As stated earlier, interfaces
in TypeScript give you the rules and you implement them as you see fit. This is evident
from the preceding diagram. The AdminUser class has a method not defined in
UserInterface; however, this is not an issue because the class is in compliance
with all the elements of the interface. There is no rule that says that you cannot add
to your class, only that you need to meet the requirements of the interface that your
class implements.

Case Study – Writing Your First Interface

Imagine you are working with an application development team building an
application for warehouse floor workers. You have the task of building the product
creation classes and functions. You have developed a plan for your classes based
on the functional requirements of your application. You start by creating a product
interface called ProductTemplate. ProductTemplate defines the structure of
our product object and base requirements. Note that we could also use a type object
in the same way, and it may be preferable since this is a simple object, not a class,
which could not be represented by a type. However, for the sake of this example
and also to enlighten you to the fact that interfaces can also be used as types when
defining a simple object, we have constructed the ProductTemplate interface:

Example_Interface_1.ts

1 //first interface
2 interface ProductTemplate {
3 height: number
4 width: number
5 color: string
6 }

Link to the preceding example: https://packt.link/wYJis.

https://packt.link/wYJis

188 | Interfaces and Inheritance

When defining an interface, we start with the interface keyword, followed by the
name of our interface, ProductTemplate, as shown in the preceding snippet. We
have three properties that our product requires – height, width, and color. Now that
we have described what our product data should look like, let's use it:
7 //make product function
8 const productMaker = (product: ProductTemplate) => {
9 return product
10 }

We have built a function, productMaker, that takes a product object
as an argument. To ensure that only objects with the properties required
by our productMaker function get passed to the function, we use our
ProductTemplate interface, as shown in the preceding snippet. Now, all we
need to do is define our product object; we will use our interface there as well:
11 // implement interface
12 const myProduct: ProductTemplate = {
13 height: 10,
14 width: 12,
15 color: 'red',
16 }

We have declared a product object, myProduct, with our ProductTemplate
interface and added the properties required by our interface. Using the interface
in this way ensures that we are fully compliant when creating the product object.
Now, if we add a property not defined or remove a property that is defined in our
ProductTemplate interface, the IDE and or TypeScript compiler will throw a
helpful error message. IDE highlighting will depend on your IDE and the level of
support for TypeScript. VS Code should highlight the following error messages for
the preceding two scenarios.

The following error message appears when you add a property length that is not
defined in the interface:

(property) length: number

Type '{ height: number; width: number; color: string; length: number; }'
is not assignable to type 'ProductTemplate'.
 Object literal may only specify known properties, and 'length' does not
exist in type 'ProductTemplate'.ts(2322)

Interfaces | 189

The following error message appears when you don't use the color property, which is
defined in the interface:

const myProduct: ProductTemplate

Property 'color' is missing in type '{ height: number; width: number; }'
but required in type 'ProductTemplate'.ts(2741)
Example_Interface.ts(5, 5): 'color' is declared here.

Now that we have our product object, let's pass it to our productMaker function:

// call the function using console log to show the output

console.log(productMaker(myProduct));

Once you run the file using npx ts-node Example_Interface.ts, you will
obtain the following output:

{ height: 10, width: 12, color: 'red' }

This is the ideal scenario. But what would happen if you pass an object that does
not comply with the ProductTemplate interface? Consider the following code
representing this scenario:

const myBadProduct = {

 height: '20',

 color: 1

}

console.log (productMaker(myBadProduct))

You will receive the following error message when you run the file using tsc
[filename].ts:

error TS2345: Argument of type '{ height: string; color: number; }' is
not assignable to parameter of type 'ProductTemplate'.
 Property 'width' is missing in type '{ height: string; color: number;
}' but required in type 'ProductTemplate'.

VS Code prevents you from making such errors. If you hover over the red-underlined
code in the VS Code window, you will see a warning similar to the preceding
error message.

190 | Interfaces and Inheritance

Let's go back to our interface example (Example_Interface.ts). Now, we have
an interface for our product. Let's do the same for our productMaker function.
We want to make sure that whenever a function takes our product as an argument,
it is constructed in the right way. Hence, we construct the following interface –
productInterfaceFunction:

Example_Interface_2.ts

1 // first interface
2 interface ProductTemplate {
3 height: number
4 width: number
5 color: string
6 }
7 //function interface
8 interface productInterfaceFunction {
9 (product: ProductTemplate): ProductTemplate
10 }

Link to the preceding example: https://packt.link/Dzogj.

We added the function interface, productInterfaceFunction, just after
ProductTemplate. As you can see, the syntax is simple and just defines what
arguments the function can take and what it should return. We can now use the
function interface in our function declaration, as shown here:
//make product function
const productMaker: productInterfaceFunction = (product: ProductTemplate) => {
 return product }

You should again get the same output as before:

{ height: 10, width: 12, color: 'red' }

We have now used interfaces in two ways: to shape an object and a function. The only
issue here is that it's not very efficient to work this way. As good developers, we want
to be as efficient as possible and comply with object-oriented standards of coding.
To this end, we will now refactor our code to define a class that will encapsulate our
product properties and methods:

Example_Interface_3.ts

9 //product class interface
10 interface ProductClassInterface {
11 product: ProductTemplate
12 makeProduct(product: ProductTemplate) :ProductTemplate
13 }

Link to the preceding example: https://packt.link/kF4Ee.

https://packt.link/Dzogj
https://packt.link/kF4Ee

Interfaces | 191

In the preceding snippet, we have built an interface for our class where we have
defined a product property and the makeProduct method.

We are also making good use of the interfaces we created previously for
our product object and makeProduct. Next, we will use the new interface,
ProductClassInterface, to instantiate a new class:
16 //class that implements product class interface
17 class ProductClass implements ProductClassInterface {
18 product: ProductTemplate
19 constructor(product: ProductTemplate){
20 this.product = product
21 }
22 makeProduct():ProductTemplate {
23 return this.product;
24 }
25 }
26
27 //new product object
28 const product: ProductTemplate = {height:100, width:200, color: 'pink'}

In the preceding snippet, we are using the implements keyword to apply the
interface rules to our ProductClass. The syntax structure is as follows: class
ProductClass followed by the implements keyword, and then the interface
you would like to apply to the class: class ProductClass implements
ProductClassInterface. As you can see, this code is a bit less verbose and
easy to manage. Using an interface to define our product class allows us to be more
descriptive as we can not only define our class but the methods and properties
associated with it.

ype aliases can also be used in a similar manner, but types are more of a validator
than a descriptor, hence it is recommended to use types more to verify objects
returned from a function or arguments received by a function.

Interfaces and types can be used together, and they should be. However, how
they are used, where they are used, and how they are applied in code is down
to you, as they are similar in many respects and even more so in recent updates
of the TypeScript language. Let's now make a product object and use our class
instance, newProduct:
27 //new product object
28 const product: ProductTemplate = {height:100, width:200, color: 'pink'}
29
30 //call make Product function
31 // instantiate product class with new product object
32 const newProduct = new ProductClass(product)
33 // console our new product instance
34 console.log(newProduct.product)

192 | Interfaces and Inheritance

In the preceding snippet, we build a product object and then pass it to our class's
makeProduct function. We then console out the results, which is the same as
before, except now our functional code is wrapped in a class.

You will obtain the following output:

{ height: 100, width: 200, color: 'pink' }

Now that we have a basic understanding of how to implement an interface
with TypeScript, let's build a more realistic product creation process in the
following exercise.

Exercise 5.01: Implementing Interfaces

In this exercise, we will implement an interface on an object, function, and class.
Some of the code is verbose and you may not implement it this way in a real-world
application. However, this exercise will expose you to the different ways in which
you can implement interfaces in your code. We will construct a class that manages
product objects and use interfaces to enforce rules related to how our class should
be implemented. We will also use interfaces to shape our product object and class
methods. In a typical web application, this code would probably be part of a product
management interface – an inventory management application, for example.
Alternativley, it could also be part of the product creation process, where you have a
form that takes user data and processes it:

Note

The code file for this exercise can be found here: https://packt.link/SR8eg.
For this chapter, in order to run any TypeScript file, you need to go into the
file directory and execute npx ts-node filename.ts.

1. Create an interface called ProductObjectTemplate:

interface ProductObjectTemplate {

 height: number

 width: number

 color: string

}

https://packt.link/SR8eg

Interfaces | 193

When creating an interface or a type object for that matter, you should take into
consideration what are the common elements your interface or type will need.
This could be based on the application requirements or dependent only on the
functionality the application is required to have. ProductObjectTemplate
is a simple object and, in most cases, should be a type, but in order to show that
interfaces can also be used in this way, we have opted to make it an interface. As
you can see, we have just defined some basic properties that we may have for a
product – height, width, and color.

2. Using the interface defined in the preceding step, define a function called
ProductClassTemplate:

interface ProductFunctionTemplate {

 (product: ProductObjectTemplate)

}

In the preceding step, we used an interface to define a function and, by
doing this, we are providing the rules on what arguments your function can
take. This will ensure that any implementation of this function will only take
ProductObjectTemplate as an argument.

3. Build an interface for a class called ProductClassTemplate. Reuse
ProductFunctionTemplate and ProductObjectTemplate in your
new class:

interface ProductClassTemplate {

 makeProduct: ProductFunctionTemplate

 allProducts():ProductObjectTemplate[]

}

In the preceding step, we are reusing the function and product interfaces
defined in Steps 1 and 2 to build our class interface. We can simplify the code in
this step because we are reusing interfaces that we created in the first two steps.
Step 3 is a good example of how you can build complexity while also making your
code less verbose.

4. Create a Product class and implement our class interface:

class Product implements ProductClassTemplate {

 products: ProductObjectTemplate []

 constructor() {

 this.products = []

 }

 makeProduct(product: ProductObjectTemplate) {

194 | Interfaces and Inheritance

 this.products.push(product)

 }

 allProducts():ProductObjectTemplate[] {

 return this.products

 }}

In this preceding step, we created our class implementing the
ProductClassTemplate interface. This will ensure that our class adheres to
the rules defined in our interface. We are also reusing the ProductTemplate
interface to verify that our class method takes the right arguments and returns
the correct data. In the previous steps, we did a bit of prep work setting up
interfaces, and now we can reuse them in our code base, making the overall
code easier to write, well supported, and understandable.

5. Instantiate our class as follows:

const productInstance: ProductClassTemplate = new Product()const
productInstance: ProductClassTemplate = new Product()
productInstance.makeProduct({})

Here again, we are making use of an interface, ProductClassTemplate to
ensure the class we implement matches our ruleset.

If we try to call makeProduct with an empty object, we get a helpful error
message we can use to resolve our issue. Feel free to perform a test to make
sure that your interfaces are working as they should. Here, we have the correct
implementation of our class instance method, makeProduct.

6. Call the makeProduct method and provide a valid product object as defined in
our product interface:

productInstance.makeProduct(

 {

 color: "red",

 height: 10,

 width: 14

 }

)

7. Call the allProducts method and console out the results:

console.log(productInstance.allProducts())

The allProducts method returns an array of products. This would be the
equivalent of an API call that returns a list of products to your frontend.

Interfaces | 195

8. Now, console out the results of the allProducts method:

console.log(productInstance.allProducts())

9. Run the file by executing npx ts-node Exercise01.ts.

You will obtain the following output:

 [{ color: 'red', height: 10, width: 14 }]

Once you have followed the steps correctly, your output should be an array
or product object as shown in the preceding screenshot. Interfaces provide
you with the means to define contracts that govern how your code should be
implemented, which is the point of a strongly typed language such as TypeScript
and its main advantage over JavaScript. By using interfaces as shown in the
exercise, we now have code that is less prone to errors and easier to support
when working with large applications or on a large team. Interfaces can be
invaluable to the development process if they are implemented correctly.

Exercise 5.02: Implementing Interfaces – Creating a Prototype Blogging

Application

Imagine that you are a developer working on a social networking site. You are tasked
with setting up a blogging system that will allow users to post to the site. The project
is intended to scale up globally, so it will be quite large. Hence, your code needs to
be well defined with all the necessary contexts. The main theme here is context.
You are coding in a manner that will lead to bug-free code that is well supported
and understood.

First, we start with the main object – the blog post. In order to build a blogging
system, we need to define what a blog post is. Because this is a simple object, we
create a type alias, BlogPost. As mentioned previously, we can use an interface to
define this object, but types are more suited to simple, non-complex objects. A type is
more of a descriptor of a unit of something, for example, a number or a string, while
an interface is more like directions on how to interact with something, not what it is:

Note

The code file for this exercise can be found here: https://packt.link/6uFmG.

https://packt.link/6uFmG

196 | Interfaces and Inheritance

1. Define a blog type as shown in the following snippet:

type BlogPost = {

 post: string,

 timeStamp: number,

 user: string

}

2. Create an interface called AddToPost:

interface AddToPost {

 (post: BlogPost): BlogPost []

}

This interface will serve as the main interface for the method we will use to add
to our blog list. As we elaborated in the previous exercise, the AddToPost
interface defines how we will interact with our main method and also what it will
return when called.

3. Create an interface to define a class, BlogPostClass:

interface IBlogPost {

 allPost: BlogPost [],

 addToPost: AddToPost

}

Here, we define our class interface. We know we need a place to hold our blogs,
so we define an allPost global object that is of the BlogPost type array. We
also define a method, addToPost, that implements the AddPost interface.

4. Create a class called blogPostClass that implements the
blogPostClass interface:

class blogPostClass implements IBlogPost{

 allPost: BlogPost [] = []

 addToPost(post: BlogPost): BlogPost[] {

 this.allPost = [

 ...this.allPost,

 post

]

 return this.allPost

 }

}

Interfaces | 197

In the preceding class, we reuse our type to enforce and validate. The logic
of the addToPost method is up to you, the developer. In this step, the code
implements the method once it adheres to the interface by taking an argument
of the BlogPost type and returns a BlogPost array.

5. Create an instance of blogPostClass:

const blog = new blogPostClass();

6. Build three objects of the BlogPost type:

let post1: BlogPost = {post: 'Goodbye, 2020', timeStamp: 12345678,
user: 'Rayon'}
let post2: BlogPost = {post: 'Welcome, 2021', timeStamp: 12345678,
user: 'Mark'}
let post3: BlogPost = {post: 'What happened to 1999?', timeStamp:
12345678, user: 'Will'}

This step simulates a user posting to your blog site. In a real-world application,
this will be a web form that creates the object when submitted.

7. Call the addToPost method three times and pass the post objects you created
in Step 6:

blog.addToPost(post1)

blog.addToPost(post2)

blog.addToPost(post3)

In an actual web application, the call to addToPost would entail making an
API call to send the updated data to the backend of your application, but for the
purpose of this exercise, we are just updating an array. If, for example, you are
using some kind of state management for your frontend, the preceding code
could look very similar to the state management handling the backend updates.

8. Console out the allPost global from the class instance created in Step 5:

console.log(blog.allPost)

9. Run the file by executing npx ts-node Exercise02.ts.

You should see the following output:

[

 { post: 'Goodbye, 2020', timeStamp: 12345678, user: 'Rayon' },

 { post: 'Welcome, 2021', timeStamp: 12345678, user: 'Mark' },

 { post: 'What happened to 1999?', timeStamp: 12345678, user: 'Will'
}
]

198 | Interfaces and Inheritance

Exercise 5.03: Creating Interfaces for a Function for Updating a User Database

As part of a web app developer team, you have been tasked with building an interface
for a function that will update a user database. In a real-world application, this
function might be part of a user registration form that updates a user database via an
API call. The requirements are simple: the function should take an argument of the
User type, which consists of email and userId properties.

For the sake of this exercise, assume that you are just working out the logic of
the function and that the code is just temporary for testing purposes before you
implement it in your working application. As such, we will have an array that will
represent the database, which will be preloaded with some user objects:

Note

The code file for this exercise can be found here: https://packt.link/XLIz9.

1. Create a user type with email and userId properties, as shown here:

type User = {

 email: string,

 userId: number

}

Creating a user type allows you to simplify your function interface. Now, you can
reuse your User type when defining your interface in the next step.

2. Build a function interface called SuperAddMe, as shown here:

interface SuperAddMe {

 (user: User): User[]

};

In doing this, we have defined how we will interact with our function. This is a
small thing, but now, all functions of this type will have set rules. We will know
what it needs and what it will return.

https://packt.link/XLIz9

Interfaces | 199

3. Initialize an array of the User type and populate it with a few users:

let allUsers: User[] = [

 { email: 'home@home.com', userId: 1 },

 { email: 'out@side.com', userId: 2 }

];

This array will simulate a database of users that we will add to.

4. Define a function of the SuperAddMe interface type:

let adduser: SuperAddMe

adduser = function (user: User): User[] {

 return [

 ...allUsers,

 user

]

}

When implementing a function in this way, you must first declare it as being of
the interface type, which in this case is the SuperAddMe interface. Next, use
the function variable and assign a function to it that adheres to the specification
of our interface. This implementation is very similar to a type assignment,
but because of the complexity of the function, an interface is used. Also, note
that this code could be simplified by doing the declaration and assignment
on one line, but in order to show the process and make it more readable, the
assignment is implemented in parts.

5. Display the results of a call to a new function, adduser, and pass a user object
of the User type. Console out the results to show that the code is working:

console.log(

 adduser(

 { email: 'slow@mo', userId: allUsers.length }

)

)

200 | Interfaces and Inheritance

6. Run the code using the npx ts-node command. You should see the
following output:

[

 { email: 'home@home.com', userId: 1 },

 { email: 'out@side.com', userId: 2 },

 { email: 'slow@mo', userId: 2 }

]

Activity 5.01: Building a User Management Component Using Interfaces

Imagine that you are working on a web application and are tasked with building a
user management component. You need to build a class to encapsulate the user
management aspects of the application and, because you are a good developer, you
will be using interfaces to ensure that your code is easy to reuse and support. For this
activity, you can assume that your user interface will have at least three properties:
email, token, and loginAt. These properties relate to a user's email ID, the web token,
and the time on the system when the user logged in.

Note

The code file for this activity can be found here: https://packt.link/xsOhv.

Here are some steps that will help you to complete this activity:

1. Create a user object interface with the following properties: email : string,
loginAt : number, and token: string. The loginAt and token
properties should be optional properties.

2. Build a class interface with a global property, user, and use the interface
created in the preceding step to apply user object rules.

You need to define a getUser method that returns the user object and then
use the interface to ensure that the return object is a user object. Finally, define
a login method that takes a user object and password(type string) as
arguments. Use the user object interface as the user argument type.

3. Declare a class called UserClass that implements the class interface from
the preceding step. Your login method should assign the local function's user
argument to the global user property and return the global user. The getUser
method should return the global user.

https://packt.link/xsOhv

TypeScript Inheritance | 201

4. Create an instance of your class declared in Step 2.

5. Create a user object instance.

6. Console out our methods to ensure that they are working as expected.

The expected output is as follows:

{ email: 'home@home.com', loginAt: 1614068072515, token: '123456' }

{ email: 'home@home.com', loginAt: 1614068072515, token: '123456' }

Note

The solution to this activity can be found via this link.

TypeScript was born out of the need to build less confusing, clearly defined code.
Interfaces allow you to build out your code in the most structured way possible.
Everything has rules and there is no confusion, unlike with vanilla JavaScript.

To summarize the importance of interfaces, you can say that now you can produce
code that is better structured and easier for third parties to use.

Let's say, for example, that you built a user class as you did in the preceding activity,
and now you need to move on to a different part of your project. The interfaces you
have built will be a great help to the developer taking over the user section of the
application, or maybe some other developer wants to build a user class with a similar
structure to your user class. By using the interfaces you have defined, they can build
a structure that follows all the rules you have put in place. This is also helpful as
regards debugging, as now they know how things are expected to function and can
find where the issues are by using the interfaces as a guideline.

The next section of this chapter is dedicated to inheritance in TypeScript.

TypeScript Inheritance
We will now dive into inheritance, which is one of the core principles of object-
oriented programming. It allows us to stay DRY (don't repeat yourself). Inheritance
also allows us to be polymorphic, by abstracting functionality. Inheritance gives you
the ability to extend your classes from the original class to a child class, which allows
you to retain the functionality from the parent or original class and add or override
what you don't need.

202 | Interfaces and Inheritance

Child classes can override methods of their parents and have their own methods and
objects. Inheritance only allows you to build on the parent class; how you implement
your child class is up to you. However, the rule is that there must be some code
you need to reuse from your parent class in your child class or you should create
a new class as there would be no need to extend a class you don't plan to use any
code from.

Let's say you have a user class created to manage users in your application. You are
working on a web application and, in the planning stages, you come to the realization
that you need more than one user type, as different users will have different levels
of access and be able to perform different actions depending on their roles. This is
the perfect case for the use of inheritance. Any time you have common properties
and functionality, you can extend and not duplicate your code. In this case, we have
several user types, which all have common properties of a user: email, createDate,
lastLogin, and token, for example.

Because these properties are common to all users, we can put them all into a user
class. The user class will serve as the base class that we can extend to our child
classes. Your child classes will now have all the common properties without you
having to declare them for each child class. As you can see, this is a much more
efficient way to do things; it stops code duplication and allows for the consolidation
of functionality.

First, let's go over some ground rules of inheritance in TypeScript:

TypeScript only supports inheritance in two ways: single-level and multi-level. Thus,
in TypeScript, a child can inherit from a parent (single-level inheritance) or a child can
inherit from another child (multi-level inheritance).

Note

They are other types of inheritance, but since Typescript does not support
those patterns, this chapter will not address these types here.

TypeScript Inheritance | 203

Here, we have a diagram of the two types of inheritance that TypeScript supports –
single-level and multi-level:

Figure 5.2: An example of single- and multi-level inheritance

Single-level inheritance occurs when a child class inherits directly from a parent
class, as shown in the preceding diagram. The Son child class is derived from the
Father parent class and has all its attributes. It can also have its own properties and
functions that are unique to the child class. One of the goals of inheritance is to build
on top of an existing base, therefore, just creating a duplicate of the class would be
pointless. Multi-level inheritance works the same as single-level inheritance, except
the child class inherits from another child class and not directly from the parent, as
shown in the preceding diagram. In other words, single-level is derived directly from
the base class, which has no parents, while a multi-level child class inherits from a
derived class. As you can see, the Grandfather class is the base class and therefore
has no parents. Father is derived from GrandFather, but Son, in this case, is derived
from Father, making this example multi-level.

204 | Interfaces and Inheritance

TypeScript makes use of the private and public keywords to allow you to hide code
from a child class that is private and control how your class properties are accessed
by a child class with getter and setter methods. You can override any method that is
exposed by a parent class in the child that includes the constructor method by using
the keyword super, which is a direct link to the parent class. super also allows you to
access properties and methods of the parent class even if they are overridden in your
child class.

To see how inheritance works in code, let's go back to our user example that we
covered in the introduction to this section. The users of any given application have
some common properties, email, createDate, lastLogin, and token, for example. We
will use these common elements to build out a base user class:

Examples_Inheritance_1.ts

1 class UserOne {
2 email: string = "";
3 createDate: number = 0;
4 lastLogin: number = 0;
5 token: string = ""
6
7 setToken(token: string): void {
8 // set user token
9 this.token = token;
10 }
11 resetPassword(password: string):string {
12 // return string of new password
13 return password;
14 }
15 }

Link to the preceding example: https://packt.link/23ts2.

Here is some information on the properties used in the base class. This will also help
you understand why these properties are present in the base class:

• email: This property serves as a unique identifier.

• createDate: This property allows you to know when the user was added to
the system.

• lastLogin: This property lets us know when the user was last active on
the system.

https://packt.link/23ts2

TypeScript Inheritance | 205

• token: This property will validate user requests to the application's API.

• setToken: This property allows us to set and reset the token property; for
example, the user logs out of the application and the token needs to be set
to null.

• resetPassword: This property allows us to reset the current user's password.

We are also using the this keyword to access our class-level token in our setToken
function. We have also provided a number of default values in our base class, such as
setting an empty string for email and zero for createDate. This just makes it easier
to create instances of the class as we do not need to provide values every time we
initialize a class instance.

Now, let's move on to inheritance. We will now create a child class, AdminUser:
16 class AdminUser extends UserOne {
17 // pages admin has access to
18 adminPages: string [] = ["admin", "settings"];
19
20 // method that allows the admin to reset other users
21 resetUserPassword(email: string):string {
22 // return default user password
23 return "password123";
24 }
25 }

In order for us to create a child class, we must use the extends keyword followed
by the parent class, as shown in the preceding snippet. The syntax structure is as
follows: class keyword followed by the name of the child class, the extends keyword,
and finally, the name of the parent class you would like to extend: class AdminUser
extends UserOne.

Before we move on to some examples, let's list a few things we cannot do with class
inheritance in TypeScript:

• You cannot use other types of inheritance other than single- and multi-level.

• If you declare a property or a method private, you cannot access it directly in
your derived classes.

• You cannot override the constructor method of your base class unless you call
super in your derived class's constructor.

206 | Interfaces and Inheritance

Now, let's go back to our child class, AdminUser. Note that we have added
some properties and methods unique to our child class. Unique to AdminUser
are adminPages, which is a list of pages only the admin user has access to,
and resetUserPassword, which takes an email address of a user and returns a
default password:

Note

You can also reference directly the properties and methods of your parent
class by using the this keyword in the child class, since AdminUser is
now a combined class.

Now, consider the following snippet:
26 // create a instance of our child class
27 const adminUser: AdminUser = new AdminUser()
28
29 // create a string to hold our props
30 let propString = ''
31
32 // loop through your props and appends prop names to propString
33 for(let u in adminUser) {
34 propString += u + ','
35 }

In the preceding snippet, we create an instance of our child class, AdminUser. We
also declare a string, propString, as an empty string. This string will hold a list of
your class properties. Using a for loop, we loop over our class instance and append
the properties to propString.

Now, console out an instance of our child class to verify that we have successfully
inherited from our base class:
36 // console out the results
37 console.log(propString)

You should see the properties and methods of our child and parent classes printed
on the console:

email,createDate,lastLogin,token,adminPages,constructor,
resetUserPassword,setToken,resetPassword,

TypeScript Inheritance | 207

The preceding output is the expected result. You now have a list of the combined
properties of UserOne and AdminUser, showing that we have successfully
extended our UserOne class to AdminUser or, in other words, we have shown that
AdminUser inherits from UserOne.

Let's now take inheritance up one level by deriving a new class from the AdminUser
class. Call the derived class SuperAdmin, because not all admins are created equal:

Examples_Inheritance_2.ts

class SuperAdmin extends AdminUser {
 superPages: string[] = ["super", "ultimate"]

 createAdminUser(adminUser: AdminUser): AdminUser {
 return adminUser
 }
}

Link to the preceding example: https://packt.link/XcFR6.

As you can see from the preceding snippet, we are now extending the AdminUser
class to create a SuperAdmin class. This means that we now have multi-level
inheritance as our current class is inheriting from a derived class. We have also added
a new property, superPages, and a method, createAdmin.

Multi-level inheritance is useful for building complexity while still keeping your code
easy to manage.

Next, we are going to overload our resetPassword method in the SuperAdmin
child class.

We want to create a new method for resetting passwords in our SuperAdmin class.
We require a method that adds a hash to make the user password more secure as
this will be the admin super user's password:
26 class SuperAdmin extends AdminUser {
27 superPages: string[] = ["super", "ultimate"]
28 readonly myHash: string
29
30 constructor() {
31 super()
32 this.myHash = '1234567'
33 }
34
35 createAdminUser(adminUser: AdminUser): AdminUser {
36 return adminUser
37 }
38 resetPassword(password: string): string {
39 // add hash to password
40 return password + this.myHash;
41 }
42 }

https://packt.link/XcFR6

208 | Interfaces and Inheritance

The preceding code snippet creates a new method, resetPassword, and adds
a new myHash property to our SuperAdmin class. We gave our new method the
same name, resetPassword, as the resetPassword method in our grandfather
class, UserOne. However, this new method returns a password appended with our
hash property.

This is called method overriding because the methods have the same name and
signature, meaning they take the same arguments. The method in the grandfather
class is overridden and the new method will take precedence with instances of the
SuperAdmin class.

This is useful when you need to add some functionality to a method in a child class
but don't want to change the signature, as the new method does something similar
but not exactly the same. Consumers of your code will be able to use the same
method but get different outcomes based on which derived child class they invoke.

In the following snippet, we will console out the results of an instance of the
SuperAdmin and AdminUser classes and the resetPassword method:
43 const superAdmin = new SuperAdmin()
44 const newAdmin = new AdminUser()
45 console.log(superAdmin.resetPassword('iampassword'))
46 console.log(newAdmin.resetPassword('iampassword'))

You will obtain the following output:

iampassword1234567

iampassword

As you can see from the output, we are calling the same method and getting
a different output. This shows that we were able to successfully override the
resetPassword method from our parent class, UserOne.

You can also add some access modifiers to our classes to show how they will affect
our child classes:

class UserOne {

 email: string = "";

 createDate: number = 0;

 lastLogin: number = 0;

 private token: string = ""

 setToken(token: string): void {

 // set user token

 this.token = token;

 }

TypeScript Inheritance | 209

 resetPassword(password: string):string {

 // return string of new password

 return password;

}}

In the preceding snippet, we have added the private access modifier to the token
property. Now, we can only access the token property through the setToken
method, which is public, and all derived classes have access to the setToken
method. This is useful in cases where you want to restrict which methods and
properties to grant access to in your child classes. This is also useful in cases where
you want to abstract functionality, thereby making interfacing with your code easier
for consumers.

We want to make sure that every AdminUser class instance is initialized with an
email address. Hence, we decide to add a constructor method to our AdminUser
class to create an email address for our admin users whenever an AdminUser class
is created.

However, we cannot just create a constructor as this is a child class, which means
we already have a parent class with a constructor method and we cannot override a
constructor method without invoking our base class's constructor method.

To invoke our base class's constructor method, we use super(), which is a direct
reference to our base class's constructor method:

// adminUserTwo

class AdminUserTwo extends UserOne {

 // pages admin has access to

 constructor(email: string) {

 super()

 this.email = email;

 }

 adminPages: string [] = ["admin", "settings"];

 resetUserPassword():string {

 // return default user password

 return "password123";

 }

210 | Interfaces and Inheritance

As you can see in the preceding snippet, we have a constructor method that takes an
email address and sets the global email address. We also call the super method so
that we can invoke the constructor method on our parent class.

Now, you can create an instance of our AdminUserTwo class and pass an email
address when the instance is created. This is all transparent to the user of our
AdminUser class:

const adminUserTwo = new AdminUserTwo('home@home.com');

Now that we have covered inheritance, we will put what we have learned to good use
in the upcoming exercise.

Exercise 5.04: Creating a Base Class and Two Extended Child Classes

Imagine that you are part of a development team working on a web application for
a supermarket chain. You have the task of building a class to represent a user in
the application. Because you are a good developer and are aware that you should
not try to create one class for all use cases, you will build a base class with common
attributes you think all users in your application should have and then extend that as
required with child classes:

Note

The code file for this exercise can be found here: https://packt.link/hMd62.

1. Create a User class, as shown in the following code snippet:

class User {

 private userName: string;

 private token: string = ''

 readonly timeStamp: number = new Date().getTime()

 constructor(userName: string, token: string) {

 this.userName = userName

 this.token = token

 }

 logOut():void {

 this.userName = ''

 this.token = ''

 }

https://packt.link/hMd62

TypeScript Inheritance | 211

 getUser() {

 return {

 userName: this.userName,

 token: this.token,

 createdAt: this.timeStamp

 }

 }

 protected renewToken (newToken: string) {

 this.token = newToken

 }}

The application requires all its users to have username and token upon
creation of the user object, so we add those properties and they will be initialized
in our constructor.

We also set them to private as we do not want child classes to access our
properties directly. We also have a timestamp property that we will use to set
a creation date for the user object. This is set to readonly as it is created when
the class is instanced and we don't want it to be modified.

Different parts of your application will also need to access the properties of your
user object. Therefore, we have added getUser, a method that returns your
user properties. The getUser method will also allow derived or child classes to
access private properties in an indirect way. The application allows the user to be
logged in for a set period of time, after which the user token is expired. In order
for a user to keep working in the application, we will need to renew their token,
so we have added the renewToken method to allow for the setting of the user
token property without giving direct access to properties.

2. Create a Cashier class derived from the User class:

class Cashier extends User {

 balance: number = 0

 float: number = 0

 start(balance: number, float: number): void {

 this.balance= balance

 this.float = float

 }

}

212 | Interfaces and Inheritance

We now have a new user class, Cashier, derived from User, with some unique
traits. A user of the Cashier type would need to function in our application.
We do not, however, have access to all the properties of our parent class.
You cannot access userName and token directly. You are able to access the
renewToken method, but not through an instance of the Cashier class.
However, you can call that method while building out the Cashier class as part
of your user management for cashiers.

Why would we want to modify access in the child class as opposed to modifying
a parent? This is because of encapsulation and standardization: we want to
reduce the complexity of our code when consumed by others.

For example, you have been working on a library of useful functions. You want
your coworkers to be able to use it, but they don't need to know the inner
workings of your User class. They just need to be able to access the class using
the exposed methods and properties. This allows you to guide the process even
if you are not the person extending or implementing the code. A good example
would be the Date class in JavaScript. You don't need to know how that works.
You can simply instance it and use it as directed.

3. Create an Inventory class derived from User:

class Inventory extends User {

 products: string [] = []

 // override constructor method, add new prop

 constructor(userName: string, token: string, products: string[])
{
 // call parent constructor method

 super(userName, token)

 // set new prop

 this.products = products

}}

Our new user type, Inventory, needs to be able to initialize products upon the
declaration of a new inventory user, as this user will be dealing with products
directly and should have some products in their user queue when the user logs
in to the application.

TypeScript Inheritance | 213

In order to make that possible, we have overridden our parent class constructor
method in our child class. Our constructor now takes a new argument,
products, which is an array of the string type. This means that we have
changed the number of arguments our constructor should take based on what
we defined in our parent class. Whenever we override our constructor, we need
to call super, which is a reference to our parent class.

As you can see, this allows us to access the parent constructor method, so we
can now initialize userName and token and, in doing so, fulfill our child class's
parent requirements. The main thing to take away from this is that all our code
changes were made in the child class. Your new code for the Inventory class
does not affect the other classes derived from User. You have extended and
customized your code to deal with unique cases without having to write new
code for this user case, saving you time and keeping your code base simple.

So far, we have derived two classes from our User class, which is single
inheritance, as the child classes we created are directly derived from a base
class. The next step involves multi-level inheritance.

4. Create a new derived class, FloorWorker:

class FloorWorker extends Inventory {

 floorStock: string [] = []

 CheckOut(id: number) {

 if(this.products.length >=0) {

 this.floorStock.push(

 this.products[id]

)

 }

 }

}

214 | Interfaces and Inheritance

This is multi-level inheritance. This class takes into account floor workers. These
are users that deal with stocking shelves in the store, so they need to access
products from the inventory. They also need to have a count of the products
they have removed to stock the store shelves. They need to have access to
the User class' properties as well as access to the Products array from the
Inventory class.

In the following code snippet, we will instantiate our different user classes and
console out the results of the work we have done so far.

5. Instantiate your basic user and console out the results:

const basicUser = new User('user1', '12345678ttt')

console.log(basicUser)

You will obtain the following output:

User {

 token: '12345678ttt',

 timeStamp: 1614074754797,

 userName: 'user1'

}

6. Instantiate the Cashier class user and console out the results:

const cashUser = new Cashier('user2', '12345678')

console.log(cashUser)

cashUser.start(10, 1.5)

console.log(cashUser)

You will obtain the following output:

Cashier {

 token: '12345678',

 timeStamp: 1614074754802,

 userName: 'user2',

 balance: 0,

 float: 0

}

Cashier {

 token: '12345678',

 timeStamp: 1614074754802,

TypeScript Inheritance | 215

 userName: 'user2',

 balance: 10,

 float: 1.5

7. Instantiate the Inventory class user and console out the results:

// init inventory

const iUser = new Inventory('user3', '123456789', [

 'orange', 'mango', 'playStation 2'

])

console.log(iUser)

You will obtain the following output:

Inventory {

 token: '123456789',

 timeStamp: 1614074754819,

 userName: 'user3',

 products: ['orange', 'mango', 'playStation 2']

}

8. Instantiate the FloorWorker class user and console out the results:

// FloorWorker

const fUser = new FloorWorker('user4', '12345678', [

 'orange', 'mango', 'playStation 2'

])

fUser.CheckOut(0)

console.log(fUser.products)

console.log(fUser.floorStock)

You will obtain the following output:

['orange', 'mango', 'playStation 2']

['orange']

Note

For steps 5-8, you can also instantiate and console out all your users
belonging to the different classes at once, rather than individually, as shown
in the exercise.

216 | Interfaces and Inheritance

In this exercise, you created a base class, child classes, and worked on multi-level and
single-level inheritance. You also made use of super and access modifiers.

Exercise 5.05: Creating Bases and Extended Classes Using Multi-level

Inheritance

You are a developer working at a cell phone company and you are given the task of
building a cell phone simulation application. The company manufactures two types
of phone – a smartphone and a standard phone. The testing department wants to be
able to showcase a number of functions of their phones and requires the ability to
add more features to both phone types as the real devices are updated. After looking
at the requirements, you come to the realization that you need the ability to model
two types of phone and you also want to make it easy to update your code without
doing a lot of refactoring and breaking other code that your phone models may use.
You also know that both phones have a lot in common – they both have the basic
functionality of communicating through voice and text data.

Note

The code file for this exercise can be found here: https://packt.link/pyqDK.

1. Create a Phone class that will serve as the base class for our child classes, as
shown here:

class Phone {

powerButton: boolean;

mic: boolean;

speaker: boolean;

serialNumber: string;

powerOn: boolean = false;

restart: boolean = false;

constructor(

powerButton: boolean,

mic: boolean,

speaker: boolean,

serialNumber: string,

) {

this.powerButton = powerButton

https://packt.link/pyqDK

TypeScript Inheritance | 217

this.mic = mic;

this.speaker = speaker;

this.serialNumber = serialNumber;

}

togglePower(): void {

this.powerOn ? this.powerOn = false : this.powerOn = true

}

reboot(): void {

this.restart = true

}

}

The Phone class is where we will store all the common elements of a phone.
This will allow us to simplify our child classes to only deal with the elements
unique to them.

2. Create a Smart class that extends the base or parent class created in Step 1:

class Smart extends Phone {

touchScreen: boolean = true;

fourG: boolean = true;

constructor(serial: string) {

super(true, true, true, serial)

}

playVideo(fileName: string): boolean {

return true

}

}

The Smart child class allows us to isolate all the methods and properties of a
Smart Phone class.

3. Create a Standard class that extends the parent class created in Step 1, as
shown here:

class Dumb extends Phone {

dialPad: boolean = true;

threeG: boolean = true;

218 | Interfaces and Inheritance

constructor(serial: string) {

super(true, true, true, serial)

}

NumberToLetter(number: number): string {

const letter = ['a', 'b', 'c', 'd']

return letter[number]

}

}

Steps 2 and 3 deal with the creation of our child class, which allows us to meet
our goals of being able to update our code without issues and keep our code
clean and well maintained. Because we are planning well at this stage, if we need
to add features to our Smart phone, we just need to update one child class.
This is also true for the Standard phone class. Also, if we have a method or
property that we need in both child classes, we only need to update the Phone
parent class. With class inheritance, we work smart, not hard.

4. Create two instances of our child classes and initialize them:

const smartPhone = new Smart('12345678')

const standardPhone = new Standard('67890')

5. Console out and call the unique methods of our class instances to verify that our
child classes are working as defined:

console.log(smartPhone.playVideo('videoOne'))

console.log(standardPhone.NumberToLetter(3))

You will obtain the following output:

true

d

if you revisit the respective class definitions of the Smart and Standard
classes, you will be able to confirm that the preceding output is indeed evidence
of the fact that the classes have worked as expected.

6. Display the child class instance to show that we have all the properties and
methods of our parent class and child classes:

console.log(smartPhone)

console.log(standardPhone)

TypeScript Inheritance | 219

You will obtain the following output:

Smart {

 powerOn: false,

 restart: false,

 powerButton: true,

 mic: true,

 speaker: true,

 serialNumber: '12345678',

 touchScreen: true,

 fourG: true

}

Dumb {

 powerOn: false,

 restart: false,

 powerButton: true,

 mic: true,

 speaker: true,

 serialNumber: '67890',

 dialPad: true,

 threeG: true

}

For this preceding output, too, revisiting the respective class definitions of the
Smart and Dumb classes should be proof enough that inheritance, as applied in
this exercise, works correctly.

Now that you have an understanding of how inheritance works in TypeScript, we will
test our skills in the form of the following activity.

Activity 5.02: Creating a Prototype Web Application for a Vehicle Showroom

Using Inheritance

You are tasked with creating a web application for a vehicle showroom. You have
decided to use your new skills in inheritance to build out the classes and child classes
that will shape the vehicle objects we will require for our complete application. Note
that the showroom has several types of vehicles. However, all these types will have
some common properties. For example, all vehicles have wheels and a body. You can
use this information to build your base class.

220 | Interfaces and Inheritance

The following steps will help you to complete this activity:

Note

The code file for this exercise can be found here: https://packt.link/6Xp8H.

1. Create a parent class that will hold all common methods and properties for
a base vehicle. Define a constructor method that allows you to initialize the
base properties of this class and add a method that returns your properties as
an object.

2. Add an access modifier to properties and class methods you want to control
access to if necessary.

3. Derive two child classes from your parent class that are types of vehicles, for
example, Car and Truck.

4. Override your constructor to add some unique properties to your child classes
based on the type of vehicle.

5. Derive a class from one of the child classes created in Step 3, for example, Suv,
which will have some of the properties a truck might have, so it would be logical
to extend Truck.

6. Instantiate your child classes and seed them with data.

7. Console out our child class instance.

8. The expected output is as follows:

Car { name: 'blueBird', wheels: 4, bodyType: 'sedan', rideHeight: 14
}
Truck { name: 'blueBird', wheels: 4, bodyType: 'sedan', offRoad: true
}
Suv {

 name: 'xtrail',

 wheels: 4,

 bodyType: 'box',

 offRoad: true,

 roofRack: true,

 thirdRow: true

}

https://packt.link/6Xp8H

Summary | 221

Note

The solution to this activity can be found via this link.

Summary
In this chapter, we covered interfaces in TypeScript. You learned how interfaces allow
you to build contracts around your objects, classes, and methods. You also learned
that interfaces are rules that outline how your code is implemented. This chapter
covered how using interfaces makes your code easier to understand and is better
supported by you and other developers when working in larger teams.

This chapter also taught you about inheritance, one of the core principles of object-
oriented programing. You learned about the types of inheritance TypeScript supports
and how you can use inheritance to build complexity in your code without making
your code more complex. This chapter elucidated that stacking simple structures
to make more complex ones is a good practice as it allows you to reuse code and
not reinvent the wheel every time you need to build a class. This also lends itself
to better code support as you will write only the code you need and have common
parent classes that will remain constant throughout your application, thereby making
mistakes and bugs easier to find.

You now have a good understanding of interfaces and inheritance, two building
blocks you will make good use of as you move forward in this book and in web
development using TypeScript.

The concepts you have covered here will make you a better developer overall as now
you have the tools to write well-supported, clean, bug-free code.

In the next chapter, you will cover advanced types and will learn about type aliases,
type literals, unions, and intersection types.

Overview

This chapter introduces you to advanced types. You will start with the
building blocks of advanced types – type alias, string, and number literals.
This will allow you to gain a better understanding as you take on more
complex concepts such as union types. You will also learn how you can
combine types to build more complex types, such as intersections. Using
advanced types, this chapter teaches you how to write code that is easier
to understand for yourself and any others working with you or who are
inheriting the project. By the end of this chapter, you will be able to build
advanced types by combining primitive types, such as strings, numbers,
and Booleans, with objects.

Advanced Types

6

224 | Advanced Types

Introduction
In the previous chapter, we went over interfaces and inheritance. You saw how they
allowed for the extension and modeling of your classes. Interfaces give your classes
structure, and inheritance allows you to extend and build on your existing code.

As web applications become more complex, it is necessary to be able to model that
complexity, and TypeScript makes that easy with advanced types. Advanced types
allow you to model the complex data you will be working with as a modern web
developer. You will be able to take primitive types and make more complex types
from them, creating types that are conditional and flexible. This will allow you to
write code that is easy to understand and therefore easier to work with. As a working
developer, you may come across a dataset provided by an API that you need to
integrate into your application. These datasets can be complex. For example, Cloud
Firestore from Google is a document-based, real-time database that can have objects
nested within objects. With advanced types, you can create a type that is an exact
representation of the data coming from the API. This will provide much more context
to your code, which, in turn, will make it easier to work with for you and your team.
You will also be able to stack complexity by building simpler types and stacking them
to make more complex types.

In this chapter, we will cover the building blocks of advanced types – type aliases and
type literals. Once we learn how to build types, we will move on to more advanced
concepts, including intersection, union, and index types. All these concepts will help
you to learn how to use advanced types to add context and abstract complexity
to code.

Type Aliases
Type Aliases allow you to declare references to any type – advanced or primitive.
Aliases make our code easier to read by allowing us to be less verbose. Aliases
allow you, the developer, to declare your type once and reuse it throughout your
application. This makes working with complex types easier and your code more
readable and maintainable.

Type Aliases | 225

Let's say, for example, we are working on a social networking application and we
needed to provide an administrator user type for users to manage the pages they
created. Additionally, we also need to define a site administrator user. On a base
level, they are both admins, and therefore the types would have some commonality
between them. With a type alias, we could create an admin type as shown in
Figure 6.1, with common properties an admin user would possess and build upon that
admin when creating our site admin and user admin types. Aliases allow you to mask
the complexity of your code, which will make it easier to understand. Here we have a
diagram of an alias that assigns the Admin alias to an admin type, which is a complex
type object. We also have an example of an alias, One, that is assigned to a type,
number, which is a primitive type:

Figure 6.1: Alias assigning a complex admin type alias

Consider the following code snippet:

// primitive type assignment

type One = number;

In the preceding example, we have created an alias, One, that can be used as a type
for any number, as it is assigned to the type number.

226 | Advanced Types

Now, consider the following code snippet:

// complex (object assignment)

type Admin = {

 username: string,

 email: string,

 userId: string,

 AllowedPages: string

};

Here, we have created an Admin alias, which we have assigned to an object that
represents the common properties of a typical administrator, in the context of this
example. As you can see, we have created a reference to a type object, which we can
now use in our code instead of having to implement the object each time.

As you can see in the preceding diagram and code snippet, type aliases work in a
similar way to variable assignments, except a reference is created for a primitive type
and/or an object. This reference can then be used as a template for your data. This
will allow you to take advantage of all the benefits of a strongly typed language, such
as code completion and data validation.

Before we go into our first exercise on type aliases, we will look at some examples of
primitive and complex assignments.

Let's say you are working on a class method that takes numbers as arguments, and
only numbers. You want to make sure that when your method is used, only numbers
are passed as arguments and the right error messages are shown to the user if any
other type is passed.

First, we need to create a number type alias with the following syntax:

type OnlyNumbers = number;

The type keyword is followed by the alias, OnlyNumbers, and then the
number type.

Now we can build a class with a method that only takes numbers as an argument and
use the type alias to enforce our rule:

// instance of numbers only class

class NumbersOnly {

 count: number

 SetNumber(someNumber: OnlyNumbers) {

 this.count = someNumber

Type Aliases | 227

 }

}

Now, let's instance our class and pass some arguments to our method to see whether
our code works.

For this example, let's try and assign a string as the argument type:

// class instance

const onlyNumbers = new NumbersOnly;

// method with incorrect arguments

onlyNumbers.SetNumber("15");

In the preceding code snippet, we have provided the wrong argument of the string
type and this will result in a warning because our method, SetNumber, is expecting
a number. Also, by providing your type aliases with meaningful names such as
onlyNumbers, you can make your code easier to read and debug. For this example,
the section of the code with the problem is highlighted, and when you hover over the
error, you get a very helpful error message telling you what the issue is and how it
can be resolved:

Figure 6.2: Error message in VS Code

This is the case provided that you have the correct support from your IDE. If you don't
have IDE support, you will be shown an error message at code compilation.

This is a simple use case, but as your applications become larger, some time has
passed, or you are working in a large team, this kind of type security is vital to writing
code that is free of mistakes.

Let's consider another example: Say you are working on an online store application
and you need to use a product class that was not created by you. If the person who
created the class made use of types and used descriptive names, it would be easier
for you to work with that code.

Now, let's edit the first example with the correct argument type:

// method with correct arguments

onlyNumbers.SetNumber(15);

228 | Advanced Types

In the preceding code snippet, we have provided the correct argument type of
number and your class method takes the argument with no issues.

Now, let's consider a complex alias assignment.

For example, we want to create a new function that takes a user object as a type
argument. We could define the object as the function argument inline, as shown here:

// function and type definition

function badCode(user: {

 email: string,

 userName: string,

 token: string,

 lastLogin: number

}) {}

In the preceding snippet, the code creates a function that takes a user as an
argument, but the type is defined in the function itself. While this would work, let's
say you were using the object in a few places in your code, then, you would have to
define this object each time. This is very inefficient and, as a good developer, you
don't want to repeat code. This way of working will also lead to errors; it will make
your code harder to work with and update as every instance of the User type will
need to be changed throughout your code. Type aliases resolve this by allowing you
to define your type once, as we will demonstrate in the following code snippet.

In much the same way as we have defined our primitive type, we have defined our
User type. We use the type keyword, but now we have mapped to an object that is
a template of our User type. We can now use the User alias, rather than having to
redeclare the object every time we need to define the User type:

// object / complex type User

type User = {

 email: string,

 userName: string,

 token: string,

 lastLogin: number

};

As you can see, we have created a type with the alias User. This allows you to make
a single reference to this object type and reuse it throughout your code. If we did not
do this, we would have to reference the type directly.

Type Aliases | 229

Now you can build a new function using your User type:

// function with type alias

function goodCode(user: User){}

As you can see, this code is much less verbose and easy to understand. All your code
regarding the User type is in one location, and when changes are made to the object,
all aliases are updated. In the following exercise, you will implement what we have
covered so far to build your own type alias.

Exercise 6.01: Implementing a Type Alias

In this exercise, we will use our knowledge of types to build a function that creates
products. Let's say, for example, you are working on a shopping application and
when the inventory manager adds a product to the inventory, you need to push that
product to your array of products. This exercise demonstrates a few ways in which
type aliases can be useful by allowing you to define your Product model once and
reuse it throughout your code.

Now, in an actual inventory management application, you might have a frontend page
that allows a user to input the product name and supporting information manually.
For the purpose of this exercise, let's assume the products you want to add are
named Product_0 through to Product_5 and all have a price of 100, while the
number of each of these products added to the inventory is 15.

This may not be truly reflective of an actual scenario in an inventory management
application, but remember, our key goal is to use a type alias. So for now, a simple
for loop to complete the aforementioned tasks will suffice:

Note

All files in this chapter can be executed by running npx ts-node
filename.ts on the terminal. The code file for this exercise can be
found here: https://packt.link/EAiHb.

1. Open VS Code and create a new file named Exercise01.ts.

2. Create a primitive type alias, Count, that is of the number type. Count will be
used to keep track of the number of products:

//primitive type

type Count = number;

https://packt.link/EAiHb

230 | Advanced Types

3. Create an object type alias, Product, that is of the type object. Re-use Count
to define the count of the product. The Product type alias will be used to
define every product we add to our inventory. The properties are common
across all products:

// object type

type Product = {

 name: string,

 count: Count, //reuse Count

 price: number,

 amount:number,

}

4. Declare a products variable of the Product type array:

// product array

const products_list: Product[] = [];

In order for us to make use of the Product type, it was first assigned to a
variable in the preceding code, and the product_list variable is an array of
objects of the Product type.

5. Create a function that adds products to the array. Re-use the Product type
alias to validate the argument input:

// add products to product array function

function makeProduct(p : Product) {

 products_list.push(p); // add product to end of array

}

6. Use a for loop to create product objects of the Product type and add them to
the products array:

// use a for loop to create 5 products

for (let index = 0; index < 5; index++) {

 let p : Product = {

 name: "Product"+"_"+`${index}`,

 count: index,

 price: 100,

 amount: 15

 }//make product

Type Literals | 231

 makeProduct(p);

}

console.log(products_list);

7. Compile and run the program by executing npx ts-node Exercise01.
ts in the correct directory in which this file is present. You should obtain the
following output:

 [

 { name: 'Product_0', count: 0, price: 100, amount: 15 },

 { name: 'Product_1', count: 1, price: 100, amount: 15 },

 { name: 'Product_2', count: 2, price: 100, amount: 15 },

 { name: 'Product_3', count: 3, price: 100, amount: 15 },

 { name: 'Product_4', count: 4, price: 100, amount: 15 }

]

In this exercise, you created two type aliases, which in turn created references to your
actual types.

This allowed you to reduce complexity and make your code more readable, as now
you can provide names that have additional context with descriptive names such as
Product and products_list. If we were to write this code without the use of
aliases, at every place where you used your aliases in the exercise, you would have
to define the object or the type directly. This might not be much of an issue here with
this simple function, but keep in mind how much more code you would need to build
a class or a major project.

As we proceed to more complex type structures, this knowledge will become
invaluable. We will continue to build on our knowledge in the next section as we cover
type literals.

Type Literals
Type literals allow you to create a type based on a specific string or number. This,
in itself, is not very useful, but as we move on to more complex types such as union
types, their use will become apparent. Literals are straightforward, so we will not
spend a lot of time on them but you will need to understand the concept of literals as
we move into the next phase.

232 | Advanced Types

Let's start by creating our string and number literals.

We will begin with a string literal:

Example01.ts
1 // string literal
2 type Yes = "yes";

Link to the preceding example: https://packt.link/96IlD.

The preceding code creates a Yes type that will take only a specific string, "yes", as
the input.

Similarly, we can create a number literal:
3 // number literal
4 type One = 1;

Here, we create a number literal type, One, that will only take 1 as the input.

The basic syntax as observed in the preceding examples is quite simple. We start with
the type keyword, followed by the name (alias) of our new literal, and then the literal
itself, as shown in the preceding syntax. We now have a type of the yes string and
the number 1.

Next, we will build a function that will make use of our new types:
5 // process my literal
6 function yesOne(yes: Yes, one: One) {
7 console.log(yes, one);
8 }

We have cast our function arguments to our literal types, and because our types are
literal, only the "yes" string or the number 1 will be accepted as arguments. Our
function will not take other arguments. Let's say we passed "" and 2 as arguments
(yesOne("", 2)). You will notice the following warning in VS Code:

Figure 6.3: IDE warning when incorrect arguments are passed

https://packt.link/96IlD

Type Literals | 233

Now, let's say we passed "yes" and 2 as arguments. Again, you will get the
following warning:

Figure 6.4: Errors displayed when a parameter that cannot be assigned is passed

The preceding are some examples of error messages you might expect if you provide
the wrong arguments. The error messages are clear and tell you precisely what you
need to do to resolve the error. As you can see, even though we are passing a string
and a number, we still get a type error. This happens because these arguments are
literal; they can only match themselves exactly.

Now, let's try and pass the correct arguments:
9 // function with the correct arguments
10 yesOne("yes", 1);

Once provided with the correct arguments, the function can be called without any
issue, as shown in the following output:

yes 1

Before we move on to intersection types, let's quickly complete a simple exercise to
cement our knowledge of string and number literals.

Exercise 6.02: Type Literals

Now that we have a better understanding of literals, let's go through a small exercise
to reinforce what we have covered. Here we will create a function that takes a string
literal and returns a number literal:

Note

The code file for this exercise can be found here: https://packt.link/hHgNa.

1. Open VS Code and create a new file named Exercise02.ts.

https://packt.link/hHgNa

234 | Advanced Types

2. Create a string literal type, No, and assign the string "no" as the value. Also,
create a number literal and assign 0 as the value:

type No = "no"

type Zero = 0

3. Build a function that takes the "No" literal and prints it to the console:

function onlyNo(no: No):Zero {

 return 0;

}

4. Console out the function call results:

console.log(

 onlyNo("no")

)

This will result in the following output:

0

Literals by themselves are not very useful, but when used in combination with
more complex types, their usefulness will become apparent. For now, you need to
understand how to create literals, so you can make use of them later in this chapter.
In the next section, we move on to intersection types. All the work that we have
completed so far will help as we make use of type aliases and literals.

Intersection Types
Intersection Types allow you to combine types to form a new type with the
properties of the combined types. This is useful in cases where you have an existing
type that does not, by itself, address some data you need to define, but it can do so
in combination with another existing type. This is similar to multi-class inheritance,
as the child object can have more than one parent object that it derives its
properties from.

Let's say you have a type A with a name and age property. You also have a type B
with a height and weight property. In your application, you find that there is a need
for a person type: you want to track the user's name, age, height, and weight. You can
intersect type A and B to form a Person type. Why not just create a new type you
ask? Well, this takes us back to wanting to be good coders and good coders stay DRY
– Don't Repeat Yourself. Unless a type is truly unique in your application, you should
reuse as much code as possible. Also, there is centralization.

Intersection Types | 235

If you need to make changes to any of the type code for Person, you just need to
make the changes in A or B. This is also a bit limiting as there may be cases where
type A is used by more than one object, and if you make changes, it will break the
application. With intersection, you can simply create a type C with the changes and
update your Person type. You can also merge types with common properties.

Consider a situation where you have a name property in A and also in B. When the
types are intersected, you would now have just one name property; however, the
merged properties must not only be the same in name, but should also be of the
same type, otherwise the types will not merge and will result in errors.

If this is not clear, let's look at a property, age. This can be a number in one type and
a string in another. The only way you could intersect these types would be to make
the properties common, as either would need to be a string or number.

Imagine that as part of an e-commerce project, you are required to build a shopping
cart object that derives its properties from a Product object and an Order object.

The following diagram shows the basic properties of each object and the properties
of the new Cart object that is formed using the Product and Order objects:

Figure 6.5: Diagram showing the properties of the Cart object

236 | Advanced Types

In the diagram, we have our parent objects, Product and Order, that combine to
form a child object, Cart, with all the properties of its parent objects. Please note
that we can have more than two parents in an intersection, but for the sake of this
explanation, we will stick to two, as this will allow you to grasp the concept faster. In
the upcoming example, we will walk through the process of creating our new Cart
type in code and a basic use case.

Imagine you are working on the shopping application. You need to create an object to
model the product data you will push to the cart for checking out. We already have a
Product type for our product data. The Product type has most of what we need to
display correct information pertaining to our products on the web page. However, we
are missing a few things we require when checking a product out. We will address this
not by creating a new type of product, but we will create an Order type with just the
properties we need: orderId, amount, and discount, the last of which is optional
as it will not always apply.

Here is the code for declaration of the Product type:

Example02.ts

1 // product type
2 type Product = {
3 name: string,
4 price: number,
5 description: string
6 }
7
8 // order type
9 type Order = {
10 orderId: string,
11 amount: number,
12 discount?: number
13 }

Link to the preceding example: https://packt.link/DZ7Iz

In the preceding code snippet, we have created our parent types names Product
and Order. Now we need to merge them. This will create the type we need to model
our cart data:
14 // Alias Cart of Product intersect Order
15 type Cart = Product & Order;

https://packt.link/DZ7Iz

Intersection Types | 237

We build our cart object by assigning an alias, Cart, to our Product and Order
types and using & between our two types, as shown in the preceding snippet. We now
have a new merged type, Cart, that we can use to model our cart data:
16 // cart of type Cart
17 const cart: Cart = {
18 name: "Mango",
19 price: 400,
20 orderId: "x123456",
21 amount: 4,
22 description: "big sweet, full of sugar !!!"
23 }

The preceding is an example of a cart object declared using the Cart type. As you
can see, we have access to all our properties and can omit optional ones that may not
always apply, such as discount.

If we do not provide all the required properties, the IDE gives a very helpful error
message telling us just what we need to do in order to fix the issue:

Figure 6.6: The error message displayed when missing required properties

Now, let's console out our new cart object: This will display the following output:

{

 name: 'Mango',

 price: 400,

 orderId: 'x123456',

 amount: 4,

 description: 'big, sweet, and full of sugar !!!'

}

238 | Advanced Types

In the next section, you will get some hands-on experience in terms of creating
intersection types by performing an exercise in which you will build a prototype user
management system.

Exercise 6.03: Creating Intersection Types

You are working on an e-commerce application; you have been assigned the task
of building out the user management system. In the application requirements,
the customer has listed the types of user profiles they expect will interact with the
system. You will use type intersection to build out your user types. This will allow
you to build simple types that can be combined to make more complex types and
separate your concerns. This will result in code that is less error-prone and better
supported. Here, we name the user types we will build and provide an overview of
their functions:

• Basic user: This user will have the properties _id, email, and token.

• Admin user: This user will have the ability to access pages not accessible to a
normal user. This user will have the properties accessPages and lastLogin.
accessPages is a string array of pages that this user can access, while
lastLogin will help us to log the activates of the Admin user.

• Backup user: This user has the job of backing up the system and the user
properties of lastBackUp and backUpLocation. lastBackUp will let us
know what time the system was last backed up, while backUpLocation will
tell us where the backup files are stored.

• superUser: This user is an intersection of the Admin and User types. All users
require the properties of a Basic user, but only Admin users require Admin
properties. Here, we use type intersection to build the necessary properties
we need.

• BackUpUser: This user is an intersection of the Backup user and Basic
user types. Once again, we can incorporate into our basic user the necessary
complexity this user type requires in order to function.

Note

The code file for this exercise can be found here: https://packt.link/FVvj5.

1. Open VS Code and create a new file named Exercise03.ts.

https://packt.link/FVvj5

Intersection Types | 239

2. Create a basic User type:

// create user object type

type User = {

 _id: number;

 email: string;

 token: string;

}

This will be the type we will use as our base for the other user types in
our application. Thus, it has all the common user properties that all users
will require.

3. Create an Admin user type for users who need to perform the functions of
an administrator:

// create an admin object type

type Admin = {

 accessPages: string[],

 lastLogin: Date

}

4. Create a Backup user type for users who are responsible for backing up the
application data:

// create backupUser object type

type Backup = {

 lastBackUp: Date,

 backUpLocation: string

}

5. Using your User and Admin types, declare a superuser object of the User
type at the Admin intersect. Add the required properties. In order to create
a superuser, you will have to provide values for the properties of User and
Admin, as shown in the following code block:

// combine user and admin to create the user object

const superUser: User & Admin = {

 _id: 1,

 email: 'rayon.hunte@gmail.com',

 token: '12345',

 accessPages: [

 'profile', 'adminConsole', 'userReset'

240 | Advanced Types

],

 lastLogin: new Date()

};

In an actual application, this code may be in a login function and the values
returned might be from an API on login.

6. Build a BackUpUser type by assigning the alias BackUpUser to the
intersection of User and Backup:

// create BackUpUser type

type BackUpUser = User & Backup

7. Declare a backUpUser object of the BackUpUser type and add the
requisite properties:

// create backup user

const backUpUser: BackUpUser = {

 _id: 2,

 email: 'rayon.backup@gmail.com',

 token: '123456',

 lastBackUp: new Date(),

 backUpLocation: '~/backup'

};

8. Console out your superUser and backupUser objects:

// console out superUser props

console.log(superUser);

// console out backup user props

console.log(backUpUser);

This will print the following output:

{

 _id: 1,

 email: 'rayon.hunte@gmail.com',

 token: '12345',

 accessPages: ['profile', 'adminConsole', 'userReset'],

 lastLogin: 2021-02-25T07:27:57.009Z

}

{

 _id: 2,

 email: 'rayon.backup@gmail.com',

Union Types | 241

 token: '123456',

 lastBackUp: 2021-02-25T07:27:57.009Z,

 backUpLocation: '~/backup'

}

In the preceding exercise, you built two user types using the superUser and
backupUser intersections that are based on the User, Admin, and Backup types.
The use of intersections allows you to keep your core user type simple and can
therefore be used as a model for most of your user data. Admin and Backup are
intersected with User only when it is necessary to model that specific user case.
This is the separation of concerns. Now, any changes made to User, Backup, or
Admin will be reflected in all child types. We will now take a look at union types,
which is a type functionality. However, unlike intersections, union types provide an OR
functionality when types are merged.

Union Types
Union Types are similar to intersections as they are a combination of types to form
a single type. Union types differ, however, in that they do not merge your types but
provide or type functionality instead of an and type functionality, which was the
case with intersection types. This works in a similar way to the ternary operator in
JavaScript, where the types you are combining are separated by the | pipe. If this is
confusing, it will all become clear as we move on to an example. We will also take a
look at type guards, which is a pattern that will play a major role in the app use of
union types. First, consider the following visual representation of a union type:

Figure 6.7: Illustration of a union type assignment

242 | Advanced Types

In the preceding diagram, we have a basic diagram of a union type assignment, where
Age can be of the number or string datatypes. You can have union types with
more than two options and non-primitive types. This gives you the option to write
code that is more dynamic. In the upcoming example, we will extend our age example
as mentioned previously and build a basic union type.

Let's say you're working on an application that needs to validate someone's age. You
want to write one function that will process ages from a database that are stored as
a number and ages from the web frontend that come in as a string. In a case such as
this, you might be tempted to use any as a type. However, unions allow us to address
this kind of scenario without creating a vector for errors by using any:

Example03.ts

1 // basic union type
2 type Age = number | string;

Link to the preceding example: https://packt.link/EHziL.

First, we create a union type, Age, which can be of the number or string datatypes,
as shown in the preceding syntax. We assign our Age alias to our types separated
by a pipe, |. We could have more than two options, for example, "number" |
"string" | "object":

Now we create a function that will make use of the new type, Age, as shown in the
preceding snippet:
3 function myAge(age: Age): Age {
4 if (typeof age === "number") {
5 return `my age is ${age} and this a number`;
6 } else if (typeof age === "string"){
7 return `my age is ${age} and this a string`;
8 } else {
9 return `incorrect type" ${typeof(age)}`;
10 }
11 }

The myAge function takes the Age type as an argument and returns a formatted
string of the Age type using an if …else loop. We are also making use of a type
guard pattern, typeof, which allows you to check the type of your argument. This
kind of type checking is necessary while using union types as your argument can be
of several types, which, in the case of this preceding code snippet, is a string or a
number. Each type will need to be processed with a different logic.

https://packt.link/EHziL

Union Types | 243

Union types can also be objects; however, in such a case, typeof will not be very
useful as it will only return the type, which will always be object. To resolve such
cases, you can check for any unique properties of your object and apply your logic
in this way. We will see examples of this as we work through our exercise in the
next section.

Now, let's get back to the example. To ensure that our functions are working as they
should, we console out the results by calling them with different argument types
(number and string):

console.log(myAge(45));

console.log(myAge("45"));

This will result in the following output:

my age is 45 and this a number

my age is 45 and this a string

Let's say that you passed an incorrect argument instead:

console.log(myAge(false));

You will see the following error message:

error TS2345: Argument of type 'boolean' is not assignable to parameter
of type 'Age'.

Exercise 6.04: Updating the Products Inventory using an API

In the following exercise, we will extend our inventory management example from
Exercise 03 by adding an API. This will allow remote users to add and update products
in our inventory via an API PUT or POST request.

Since the processes of updating and adding a product are so similar, we will write one
method to handle both requests and use a union type to allow our method to take
both types and remain type safe. This will also mean that we can write less code and
encapsulate all related code to the one method, which will make it easy for us or any
other developer working on the application to find and resolve errors.

You could use the any type, but then your code would become type insecure, which
could lead to bugs and unstable code:

Note

The code file for this exercise can be found here: https://packt.link/Qvx6D.

https://packt.link/Qvx6D

244 | Advanced Types

1. Open VS Code and create a new file named Exercise04.ts.

2. Create three types, Product, Post, and Put, along with the base objects you
will require, as shown here:

type Product = {

 name: string,

 price: number,

 amount: number,

}

type Post = {

 header: string,

 method: string,

 product: Product

}

type Put = {

 header: string,

 method: string,

 product: Product,

 productId: number

}

We first create a product type that will help us to define what format the product
data will take as part of a Put or Post request. We have also defined Put and
Post, which differ slightly because a Put request will need to update a record
that already exists. Note that Put has the property productId.

3. Create a union type, SomeRequest, which can be either the Put or Post type:

type SomeRequest = Post | Put

The data being matched to the union type can be any of the types in the union.
Note that unions do not combine types; they simply try to match the data to one
of the types in the union, which gives you, the developer, more flexibility.

4. Create an instance of an array of the Product type:

const products: Product[] = [];

Union Types | 245

5. Build a handler function that processes a request of the SomeRequest type:

function ProcessRequest(request: SomeRequest) {

 if ("productId" in request) { products.forEach(

 (p: Product, i: number) => {

 products[request.productId] = {

 ...request.product

 };});

 } else {

 products.push(request.product);

 }}

This function will receive a request of the Put or Post type and add or update
an attached product to the products array. In order to know whether it
should update or add the function, it first checks whether the product has a
productId argument. If it does, we will loop through the Products array
until we find a matching productId argument. Then, we use the spread
operator to update the product data with the data from the request. If the
product does not have a productId argument, we then just use the push
function attached to the array to add the new product to the array.

6. Declare apple and mango objects of the Product type, as shown here:

const apple: Product = {

 name: "apple",

 price: 12345,

 amount: 10

};

const mango: Product = {

 name: "mango",

 price: 66666,

 amount: 15

};

In a real API, the data would be provided by the user sending it via a request,
but for the purposes of this exercise, we have hardcoded some data for you to
work with.

246 | Advanced Types

7. Declare postAppleRequest and putMangoRequest objects of the Post
and Put types:

const postAppleRequest : Post = {

 header: "zzzzz",

 method: 'new',

 product: apple,

};

const putMangoRequest : Put = {

 header:"ggggg",

 method: 'update',

 product: mango,

 productId: 2

};

In the preceding code, we have defined our POST and PUT objects. We have
attached the product object as a payload of the request. Remember that the
function is not checking the product object but the request type, which will tell
the function whether it's POST or PUT.

8. Call the handler function and pass postAppleRequest and
putMangoRequest as arguments, as shown in the following code snippet:

ProcessRequest(postAppleRequest);

ProcessRequest(putMangoRequest);

In a normal API, when the user makes a PUT or POST request, the
ProcessRequest method would be called. We are, however, just simulating
an API and making the calls ourselves.

9. Console out the results:

console.log(products)

You will see the following output:

[

 { name: 'apple', price: 12345, amount: 10 },

 <1 empty item>,

 { name: 'mango', price: 66666, amount: 15 }

]

Index Types | 247

In the preceding output, we can now see the products that we passed to
our methods. This means that our simulated API code using unions works
as intended.

Union types, such as intersection types, give you, the developer, more functionality
and flexibility when building your applications. In the preceding exercise, we were
able to write a function that takes a single argument of two different types and
applies logic based on type checking patterns or type guards. In the next section,
we will continue the theme of more code flexibility with index types.

Index Types
Index types allow us to create objects that have flexibility as regards the number of
properties they may hold. Let's say you have a type that defines an error message,
which can be more than one type, and you want the flexibility to add more types of
messages over time. Because objects have a fixed number of properties, we would
need to make changes to our message code whenever there was a new message
type. Index types allow you to define a signature for your type using an interface,
which gives you the ability to have a flexible number of properties. In the following
example, we will expand on this in the code:

Example04.ts

1 interface ErrorMessage {
2 // can only be string | number | symbol
3 [msg: number]: string;
4 // you can add other properties once they are of the same type
5 apiId: number
6 }

Link to the preceding example: https://packt.link/IqpWH

First, we create our type signature, as shown in the preceding snippet. Here we have
a property name and type, which is the index [msg: number] followed by the
value type. The name of the msg argument can be anything, but as a good coder, you
should provide a name that makes sense in the context of the type. Note that your
index can only be a number, string, or symbol.

https://packt.link/IqpWH

248 | Advanced Types

You can also add other properties to your index, but they must be the same type as
the index, as shown in the preceding code snippet, apiId: number. Next, we make
use of your type by casting it to errorMessage. We can now have an error message
object with as many properties as we require. There is no need to modify the type
as our list of messages grows. We maintain flexibility while keeping our code typed,
thereby making it easy to scale and support:
7 // message object of Index type ErrorMessage
8 const errorMessage: ErrorMessage = {
9 0: "system error",
10 1: "overload",
11 apiId: 12345
12 };

Now, we console out the new object just to make sure that everything works:
// console out object
console.log(
 errorMessage
);

You will get the following output once you run the file:

{ '0': 'system error', '1': 'overload', apiId: 12345 }

If we try to give a property name of an incorrect type, such as a string, we get the kind
of error message you might expect:

Figure 6.8: Output displaying the type error

Index Types | 249

You can, however, use strings that are numbers, for example, and the code will
function as before and the output will be the same:
14 // message object of Index type ErrorMessage
15 const errorMessage: ErrorMessage = {
16 '0': "system error",
17 1: "overload",
18 apiId: 12345 };

You may think that this will not work given that the value is a string, but it gets
converted to a number literal. It will also work the other way around using a number
literal that gets converted to a string. Next in our exercise, we will simulate the real-
world usage of an index type, building a simple system to process error messages.

Exercise 6.05: Displaying Error Messages

In this exercise, we will build a system to process error messages. We will also reuse
the ErrorMessage index type we created in our example. The code in this exercise
is somewhat contrived but will serve to help you get a better understanding of
index types:

Note

The code file for this exercise can be found here: https://packt.link/ZkApY.

1. Open VS Code and create a new file named Exercise05.ts.

2. Create the ErrorMessage type interface from our example if you have not
already done so:

interface ErrorMessage {

 // can only be string | number | symbol

 [msg: number]: string;

 // you can add other properties once they are of the same type

 apiId: number

}

https://packt.link/ZkApY

250 | Advanced Types

3. Build an errorCodes object as an ErrorMessage type, as shown here:

const errorMessage : ErrorMessage = {

 400:"bad request",

 401:"unauthorized",

 403:"forbidden", apiId: 123456,

 };

4. Create an error code array as errorCodes, as shown here:

const errorCodes: number [] = [

 400,401,403

];

5. Loop through the errorCodes array and console out the error messages:

errorCodes.forEach(

 (code: number) => {

 console.log(

 errorMessage[code]

);

 }

);

Once you run the file, you will obtain the following output:

bad request

unauthorized

forbidden

Index types allow you to have flexibility with your type definitions, as you can see in
the preceding exercise. If you need to add new codes, you will not need to change
your type definition; simply add the new code property to your errorCode object.
Index types work here because even though the properties for the object are
different, they all have the same basic makeup – a number property (key) followed by
a string value.

Index Types | 251

Now that you have the building blocks for advanced types, you can work through the
following activities. The activities will make use of all the skills you have acquired in
this chapter.

Activity 6.01: Intersection Type

Imagine that you are a developer working on a truck builder feature for a custom
truck website. You will need to make it possible for customers that come to the site
to build a variety of truck types. To that end, you need to build your own intersection
type, PickUptruck, by combining two types, Motor and Truck. You can then use
your new type, PickUpTruck, with a function that returns the type and validates its
input with the PickUpTruck intersection type.

Note

The code file for this activity can be found here: https://packt.link/n4tfL.

Here are some steps that will help you to complete this activity:

1. Create a Motor type, which will house some common properties you may reuse
on their own or in combination with other types to describe a vehicle object. You
can use the following properties as a starting point: color, doors, wheels,
and fourWheelDrive.

2. Create a Truck type with properties common to a truck, for example,
doubleCab and winch.

3. Intersect the two types to create a PickUpTruck type.

4. Build a TruckBuilder function that returns our PickUpTruck type and also
takes PickUpTruck as an argument.

5. Console out the function return.

https://packt.link/n4tfL

252 | Advanced Types

6. Once you complete the activity, you should obtain the following output:

{

 color: 'red',

 doors: 4,

 doubleCab: true,

 wheels: 4,

 fourWheelDrive: true,

 winch: true

}

Note

The solution to this activity is presented via this link.

Activity 6.02: Union Type

A logistics company has asked you to develop a feature on their website that will
allow customers to choose the way they would like their packages to be shipped –
via land or air. You have decided to use union types to achieve this. You can build
your own union type called ComboPack, which can be either the LandPack or
AirPack type. You can add any properties to your package types that you think
will be common to a package. Also, consider using one type literal to identify your
package as air or land, and a label property that will be optional. You will then need
to construct a class to process your packages. Your class should have a method to
identify your package type that takes arguments of the ComboPack type and uses
your literal property to identify the package type and add the correct label, air
cargo or land cargo.

Note

The code file for this activity can be found here: https://packt.link/GQ2ZS.

https://packt.link/GQ2ZS

Index Types | 253

Here are some steps that will help you to complete this activity:

1. Build a LandPack and an AirPack type. Make sure to have a literal to identify
the package type.

2. Construct a union type, ComboPack, which can be LandPack or AirPack.

3. Make a Shipping class to process your packages. Make sure to use your literal
to identify your package types and modify your package with the correct label for
its type.

4. Create two package objects of the AirPack and LandPack types.

5. Instantiate your Shipping class, process your new objects, and console out the
modified objects.

Note

The solution to this activity is presented via this link.

Activity 6.03: Index Type

Now that you have done such a good job of incorporating the shipping option into the
website, the company now needs you to add a feature that will allow their customers
to track the status of their packages. It is important to the client that they have the
ability to add new package statuses as the company grows, and as shipping methods
change, they would like that flexibility.

Hence, you have decided to build an index type, PackageStatus, using an
interface signature of the status property of the string type and a value of
the Boolean type. You will then construct a Package type with some common
package properties. You will also include a packageStatus property of the
PackageStatus type. You will use PackageStatus to track three statuses of
your package: shipped, packed, and delivered, set to true or false. You
will then construct a class that takes an object of the Package type on initialization,
contains a method that returns the status property, and a method that updates the
status property, which takes status as a string and Boolean as a state.

254 | Advanced Types

The method that updates your package should also return your
packageStatus property.

Note

The code file for this activity can be found here: https://packt.link/2LwHq.

Here are some steps that will help you to complete this activity:

1. Build your PackageStatus index type using an interface with a property of
status of the string type and a value of the Boolean type.

2. Create a Package type that includes a property of the PackageStatus type
and some common properties of a typical package.

3. Make a class to process your Package type that takes the Package type on
initialization, has a method to return your packageStatus property, and a
method that updates and returns the packageStatus property.

4. Create a Package object called pack.

5. Instantiate your PackageProcess class with your new pack object.

6. Console out your pack status.

7. Update your pack status and console out your new pack status.

The expected output is as follows:

{ shipped: false, packed: true, delivered: true }

{ shipped: true, packed: true, delivered: true }

Note

The solution to this activity can be found via this link.

https://packt.link/2LwHq

Summary | 255

Summary
In this chapter, we covered advanced types, which allow you to extend beyond your
basic types. As applications become more complex and the frontend takes on more
functionality, your data models will also become more complex. This chapter showed
you how TypeScript advanced types give you the ability to implement strong typing,
which will help you develop cleaner and more reliable applications. We covered the
building blocks of advanced types – type aliases and literals, and we then moved
on to intersection, union, and index types with some practical examples, exercises,
and activities.

You now have the ability to create complex types that will allow you to build
types for modern applications and write code that is well supported and scalable.
Having reached this point, you now have the tools to take on web frameworks,
such as Angular2 and React. You can even use TypeScript on the server side with
Node.js. There is much more to advanced types and the topic is quite vast, complex,
and abstract in its implementations. However, here in this chapter, you have been
equipped with the skills you need to start building applications with advanced types.

Overview

This chapter first establishes the motivation for decorators and then
describes the various decorator types available in TypeScript. We'll take a
look at how decorators are used and how they are customized to fit your
specific needs. We'll also cover writing your own decorators. By the end
of this chapter, you will be able to use decorators to alter the behavior of
your code, and use decorator factories to customize the decorators that are
being used. You will also learn how to create your own decorators, to be
used by your code or that of others.

Decorators

7

258 | Decorators

Introduction
In the previous chapters, you saw how to create types and classes and how
to compose them into a proper class hierarchy using interfaces, inheritance,
and composition.

Using the TypeScript type system, you can create some very elegant models of the
domains of your applications. However, models do not live by themselves; they
are part of a larger picture – they are part of an application. And classes need to be
aware that they live in a larger world, with many other parts of the system running in
tandem with them, with concerns that go beyond the scope of a given class.

Adding behaviors to or modifying classes to account for the preceding scenario is not
always easy. And this is where decorators come to the rescue. Decorators are special
declarations that can be added to class declarations, methods, and parameters.

In this chapter, we'll learn how you can use a technique called decorators to
transparently add complicated and common behaviors to your classes, without
getting your application logic all cluttered up with additional code.

Decorators are one of the features that are available and widely used in TypeScript
but are not available in JavaScript. There is a proposal for decorators in JavaScript
(https://github.com/tc39/proposal-decorators), but it's still not part of the standard. The
decorators that you will use in TypeScript are closely modeled to function just like
the proposal.

The TypeScript approach has its good and bad aspects. One good aspect is that once
decorators become a standard feature in JavaScript, you can seamlessly transfer
your decorating skill over to JavaScript, and the code that the TypeScript compiler
(tsc) generates will be an even more idiomatic JavaScript. The bad thing is that
until it becomes a standard feature, the proposal can and will change. That's why,
by default, the usage of decorators is turned off in the compiler, and in order to
use them, you need to pass in a flag, either as a command-line option or as part of
your tsconfig.json. However, before you get into the details of how to do this,
you first need to understand the concept of reflection, which will be explored in the
following section.

https://github.com/tc39/proposal-decorators

Reflection | 259

Reflection
The concept of decorating your code is tightly coupled with a concept called
reflection. In a nutshell, reflection is the capability of a certain piece of code to
examine and be introspective about itself – in a sense, to do some navel-gazing. It
means that a piece of code can have access to things such as the variables, functions,
and classes defined inside it. Most languages provide us with some kind of reflection
API that enables us to treat the code itself as if it was data, and since TypeScript is
built upon JavaScript, it inherits the JavaScript reflection capabilities.

JavaScript does not have an extensive reflection API, but there is a proposal (https://
tc39.es/ecma262/#sec-reflection) to add proper metadata (data about data) support to
the language.

Setting Up Compiler Options

TypeScript's decorators use the aforementioned proposed feature, and in order to
use them, you have to enable the TypeScript compiler (tsc) accordingly. As covered
in the preface, there are two ways to do this. You can either add the necessary flags
on the command line when you invoke tsc or you can configure the necessary
options inside the tsconfig.json file.

There are two flags concerning decorators. The first one,
experimentalDecorators, is needed to use decorators at all. If you have a file
where you're using a decorator and try to compile it without specifying it, you get the
following error:

tsc --target es2015 .\decorator-example.ts

decorator-example.ts:18:5 – error TS1219:

 Experimental support for decorators is a feature

 that is subject to change in a future release.

 Set the 'experimentalDecorators' option in your 'tsconfig' or

 'jsconfig' to remove this warning.

https://tc39.es/ecma262/#sec-reflection
https://tc39.es/ecma262/#sec-reflection

260 | Decorators

If you specify the flag, you can compile successfully:

tsc --experimentalDecorators --target es2015

 .\decorator-example.ts

In order to avoid specifying the flags all the time, add the following flags in the
tsconfig.json file:

{

 "compilerOptions": {

 "target": "ES2015",

 "experimentalDecorators": true,

 "emitDecoratorMetadata": true,

 }

}

Note

Before you begin executing the examples, exercises, and activities, we
suggest that you make sure the preceding complier options have been
enabled in your tsconfig.json file. Alternatively, you can use the file
provided here: https://packt.link/hoeVy.

Importance of Decorators
So, now you're ready to start decorating. But why would you want to do that? Let's
run through a simple example that mimics the real-world scenarios you will be
encountering later. Let's say that you are building a simple class that will encapsulate
the score for a basketball game:

Example_Basketball.ts

1 interface Team {
2 score: number;
3 name: string;
4 }
5
6 class BasketBallGame {
7 private team1: Team;
8 private team2: Team;
9
10 constructor(teamName1: string, teamName2: string) {
11 this.team1 = { score: 0, name: teamName1 };
12 this.team2 = { score: 0, name: teamName2 };
13 }
14
15 getScore() {

https://packt.link/hoeVy

Importance of Decorators | 261

16 return `${this.team1.score}:${this.team2.score}`;
17 }
18 }
19
20 const game = new BasketBallGame("LA Lakers", "Boston Celtics");

Link to the preceding example: https://packt.link/ORdNl.

Our class has two teams, each of which has a name and a numerical score. You're
initializing your team in the class constructor, and you have a method that will
provide the current score. However, you don't have a method that will update the
score. Let's add one:

updateScore(byPoints: number, updateTeam1: boolean) {

 if (updateTeam1) {

 this.team1.score += byPoints;

 } else {

 this.team2.score += byPoints;

 }

}

This method accepts the number of points to add and a Boolean. If the Boolean is
true, you're updating the first team's score, and if it's false, you're updating the
second team's score. You can take your class for a spin, as here:

const game = new BasketBallGame("LA Lakers", "Boston Celtics");

game.updateScore(3, true);

game.updateScore(2, false);

game.updateScore(2, true);

game.updateScore(2, false);

game.updateScore(2, false);

game.updateScore(2, true);

game.updateScore(2, false);

console.log(game.getScore());

This code will show us that the Lakers are losing 7:8 against the Celtics (Game 7 of
the 2010 finals, if anyone wants to know).

https://packt.link/ORdNl

262 | Decorators

The Problem of Cross-Cutting Concerns

So far so good, and your class is fully operational – as far as its own functionalities
are concerned. However, as your class will be living within a whole application, you
have other concerns as well. One of those concerns is authorization – will just anyone
be able to update the score? Of course not, as the common use case is that you
have a single person that is allowed to update the score and multiple people, maybe
millions, that just watch the score change.

Let's add that concern to the code using a hypothetical function, isAuthorized,
that will check whether the current user is actually authorized to change the score.
You will call this function and if it returns true, we'll continue with the regular logic
of the method. If it returns false, then we'll just issue an appropriate message. The
code will look like this:

updateScore(byPoints: number, updateTeam1: boolean) {

 if (isAuthorized()) {

 if (updateTeam1) {

 this.team1.score += byPoints;

 } else {

 this.team2.score += byPoints;

 }

 } else {

 console.log("You're not authorized to change the score");

 }

}

Again, this will work nicely, albeit increasing the code size of your method from five
lines of code to nine lines of code and adding some complexity. And, to be honest, the
added lines are not really relevant to counting the score, but they had to be added in
order to support authorization.

So, is that it? Of course not. Even if you know that somebody is authorized, it does
not mean that your operator will be able to update the score whenever they want.
The auditor will need detailed information of when and with what parameters
the updateScore method was called. No problem, let's add that as well using a
hypothetical function called audit. And you'll also need to add some verification
for whether the byPoints parameter is a legal value (in basketball, you can only
have 1-, 2-, or 3-point increments). And you could add some code that logs the
performance of the method in order to have a trace of how long it takes to execute.
So, your nice, clear, five-line method will become a 17-line monstrosity:

Importance of Decorators | 263

updateScore(byPoints: number, updateTeam1: boolean) {

 audit("updateScore", byPoints, updateTeam1);

 const start = Date.now();

 if (isAuthorized()) {

 if (validatePoints(byPoints)) {

 if (updateTeam1) {

 this.team1.score += byPoints;

 } else {

 this.team2.score += byPoints;

 }

 } else {

 console.log(`Invalid point value ${byPoints}`);

 }

 } else {

 console.log("You're not authorized to change the score");

 }

 const end = Date.now();

 logDuration("updateScore", start, end);

}

And inside all that complexity, you still have your simple and clear piece of logic that
if the Boolean is true, will update the Lakers' score, and if it's false, will update the
Celtics' score.

The important part here is that the added complexity does not come from your
specific business model – the basketball game still works the same. All the added
functionalities stem from the system in which the class lives. The basketball game,
by itself, does not need authorization, or performance metrics, or auditing. But the
scoreboard application does need all of those and more.

Note that all the added logic is already encapsulated within methods (audit,
isAuthorized, logDuration), and the code that actually performs all the
aforementioned operations is outside your method. The code you inserted into your
function does the bare minimum – yet it still complicated your code.

In addition, authorization, performance metrics, and auditing will be needed in
many places within your application, and in none of those places will that code be
instrumental to the actual working of the code that is being authorized or measured
or audited.

264 | Decorators

The Solution

Let's take a better look at one of the concerns from the previous section, the
performance metric, that is, the duration measurement. This is something that is very
important to an application, and to add it to any specific method, you need a few lines
of code at the beginning and a few lines at the end of the method:

const start = Date.now();

// actual code of the method

const end = Date.now();

logDuration("updateScore", start, end);

We'll need to add this to each and every method you need to measure. It's very
repetitive code, and each time you write it in, you're opening the possibility of doing
it slightly wrong. Moreover, if you need to change it, that is, by adding a parameter
to the logDuration method, you'll need to change hundreds, if not thousands, of
call sites.

In order to avoid that kind of risk, what you can do is to wrap the actual code of the
method inside some other function that will still call it. That function might look
something like this:

function wrapWithDuration(method: Function) {

 const result = {

 [method.name]: function (this: any, ...args: any[]) {

 const start = Date.now();

 const result = method.apply(this, args);

 const end = Date.now();

 logDuration(method.name, start, end);

 return result;

 },

 };

 return result[method.name];

}

The wrapWithDuration function (whose details you can ignore for now) will take a
method and return a function that has the following:

• The same this reference

• The same method name

Decorators and Decorator Factories | 265

• The same signature (parameters and return type)

• All the behavior that the original method has

• Extended behavior as it will measure the duration of the actual method

Since it will actually call the original method, when looking from outside, the new
function is totally indistinguishable from the original. You have added some behavior
while keeping everything that already was. Now, you can replace the original method
with the new improved one.

What you will get with this approach is this: the original method won't know or care
about the cross-cutting concerns of the application, instead focusing on its own
business logic – the application can "upgrade" the method at runtime with one that
has all the necessary business logic as well as all the required additions.

This kind of transparent "upgrade" is often termed a decoration, and the method
that does the decorating is called a decorator method.

What has been shown here is just one form that a decoration can take. There can
be as many solutions as there are developers, and none of them will be simple and
straightforward. Some standards should be put in place, and the TypeScript design
team decided to use the proposed JavaScript syntax.

The rest of the chapter will use that syntax, and you can ignore the solution
given here.

Decorators and Decorator Factories
As we've seen so far, decorators are just special wrapping functions that add behavior
to your regular methods, classes, and properties. What's special about them is how
they can be used in TypeScript. TypeScript supports the following decorator types:

• Class decorators: These are attached to a class declaration.

• Method decorators: These are attached to a method declaration.

• Accessor decorators: These are attached to a declaration of an accessor of
a property.

• Property decorators: These are attached to a property itself.

• Parameter decorators: These are attached to a single parameter in a
method declaration.

266 | Decorators

And consequently, there are five different places where you can use decorators, so
that means that there are five different kinds of special functions that can be used to
decorate your code. All of them are shown in the following example:

@ClassDecorator

class SampleClass {

 @PropertyDecorator

 public sampleProperty:number = 0;

 private _sampleField: number = 0;

 @AccessorDecorator

 public get sampleField() { return this._sampleField; }

 @MethodDecorator

 public sampleMethod(@ParameterDecorator paramName: string) {}

}

The sample decorators are functions that are defined as follows:

function ClassDecorator (constructor: Function) {}

function AccessorDecorator (target: any, propertyName: string,
descriptor: PropertyDescriptor) {}

function MethodDecorator (target: any, propertyName: string, descriptor:
PropertyDescriptor) {}

function PropertyDecorator (target: any, propertyName: string) {}

function ParameterDecorator (target: any, propertyName: string,
parameterIndex: number) {}

Decorators and Decorator Factories | 267

Decorator Syntax

The syntax for adding a decorator to an item is that you have to use the special
symbol @ followed by the name of the decorators. The decorator is placed before
the code that it decorates, so in the preceding example, you have performed the
following decorations:

• @ClassDecorator is immediately before the SampleClass class and is a
class decorator.

• @PropertyDecorator is immediately before the public
sampleProperty and is a property decorator.

• @AccessorDecorator is immediately before the public get
sampleField() and is a get accessor decorator.

• @MethodDecorator is immediately before the public sampleMethod()
and is a method decorator.

• @ParameterDecorator is immediately before paramName: string and is
a parameter decorator.

While the decorators themselves are regular functions, it's conventional that the
names use PascalCase instead of lowerCamelCase.

Note

For more information on PascalCase and lowerCamelCase, visit
https://techterms.com/definition/camelcase and https://techterms.com/
definition/pascalcase.

Decorator Factories

You can see that you did not specify any parameters for the set of sample decorators
in the previous section, yet the decorator function takes between one and three
parameters. Those parameters are handled by TypeScript itself and are provided
automatically when your code runs. This means that there is no way to configure your
decorators directly, for example, by passing additional parameters.

https://techterms.com/definition/camelcase
https://techterms.com/definition/pascalcase
https://techterms.com/definition/pascalcase

268 | Decorators

Fortunately, you can use a construct called decorator factories to accomplish that.
When decorating, when TypeScript encounters the @ symbol specifying a decorator,
it will evaluate the expression that follows. So, instead of providing the name of a
function that fits the special decorator requirements, you can provide an expression
that will evaluate to such a function. In other words, decorator factories are simply
higher-order functions that will return a decorator function.

For example, let's create a simple function that will take a message as a parameter
and log a message to the console. The return value of that function, whose input
parameters do not conform to the class decorator signature, will be another function,
whose input parameters do conform to the class decorator signature. The resulting
function will also simply log the message to the console as well. Consider the
following code:

Example_Decorator_Factory.ts

1 function ClassDecoratorFactory(message: string) {
2 console.log(`${message} inside factory`);
3 return function (constructor: Function) {
4 console.log(`${message} inside decorator`);
5 };
6 }

Link to the preceding example: https://packt.link/M2Ixp.

In essence, the ClassDecoratorFactory function is not a decorator, but its
return value is. This means that you cannot use ClassDecoratorFactory as a
decorator itself, but if you call it, for example, ClassDecoratorFactory("Hi"),
that value will indeed be a decorator. You can use that to decorate a couple of classes
using this syntax. The following example will help you understand this much better:

@ClassDecoratorFactory("Hi")

class DecoratedOne {}

@ClassDecoratorFactory("Hello")

class DecoratedTwo {}

https://packt.link/M2Ixp

Class Decorators | 269

Here, instead of using an expression such as @ClassDecorator
as before, you use @ClassDecoratorFactory("hi") or @
ClassDecoratorFactory("hello"). Since the result of the execution of the
ClassDecoratorFactory function is a class decorator, this is operational, and
the decorators successfully decorate the code. You will see the following output when
you run your code:

Hi inside factory

Hi inside decorator

Hello inside factory

Hello inside decorator

Note that most decorators that you will use and make will in essence be decorator
factories, as it's extremely useful to add parameters when decorating. Most sources
and even some documentation will not differentiate between the terms.

Class Decorators
A class decorator is a decorator function that is applied to the whole class. It can
be used to observe, change, or replace wholesale a class definition. When a class
decorator is called, it receives a single parameter – the constructor function of the
calling class.

Property Injection

Property injection is one of the common scenarios that class decorations are used
for. For example, let's say you're building a system that will model a school. You will
have a class called Teacher that will have the properties and model the behavior of
a teacher. The constructor for this class will take two parameters, an id number of
the teacher, and the name of the teacher. This is how the class will look:

class Teacher {

 constructor (public id: number, public name: string) {}

 // other teacher specific code

}

Let's say we build the system and it's up and running. Everything is great, but after a
while, it's time to update it.

270 | Decorators

We want to implement an access control system using tokens. Since the new system
is not related to the teaching process, it is much better to add it without changing
the code of the class itself, so you can use a decorator for this, and your decorator
can inject an extra Boolean property to the prototype of the Teacher class. The
Teacher class can be changed in the following way:

Example_PropertyInjection.ts

1 @Token
2 class Teacher {
3 // old teacher specific code
4 }

The Token decorator can be defined with the following:
5 function Token (constructor: Function) {
6 constructor.prototype.token = true;
7 }

Now, consider the following code, which creates instances of the class and prints
a message:
8 const teacher = new Teacher(1, "John Smith");
9 console.log("Does the teacher have a token? ",teacher["token"]);

Running all this code will give the following result on the console:

Does the teacher have a token? true

Link to the preceding example: https://packt.link/asjvA.

In the injection scenario, you use the provided constructor parameter but do not
return anything from your function. In this case, the class continues working as it
did before. Usually, we'll be using the prototype of the constructor to add fields and
properties to the object.

Note

For all exercises and activities in this chapter, before executing the code file,
you need to install all dependencies using npm i in the target directory.
Then, you can execute the file by running npx ts-node 'filename'
in the target directory.

https://packt.link/asjvA

Class Decorators | 271

Exercise 7.01: Creating a Simple Class Decorator Factory

In this exercise, you will be creating a simple decorator factory for the Token
decorator. Starting from the Teacher class code, we'll create a class called Student
that will need to be decorated using the Token decorator. We'll extend the decorator
to take a parameter, and decorate both classes using the created decorator factory.

The following steps will help you with the solution:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/UpdO9. This
repository contains two files: school-token.start.ts and school-
token.end.ts. The former contains the code up to step 6 of this
exercise, and the latter contains the final code of the exercise.

1. Open Visual Studio Code, create a new file in a new directory (Exercise01),
and save it as school-token.ts.

2. Enter the following code in school-token.ts:

@Token

class Teacher {

 constructor (public id: number, public name: string) {}

 // teacher specific code

}

function Token (constructor: Function) {

 constructor.prototype.token = true;

}

/////////////////////////

const teacher = new Teacher(1, "John Smith");

console.log("Does the teacher have a token? ",teacher["token"]);

3. Execute the code, and notice that it outputs true to the console.

https://packt.link/UpdO9

272 | Decorators

4. Add a Student class at the end of the file:

class Student {

 constructor (public id: number, public name: string) {}

 // student specific code

}

5. Add code that creates a student and tries to print its token property:

const student = new Student(101, "John Bender");

console.log("Does the student have a token? ",student["token"]);

6. Execute the code, and notice that it outputs true and undefined to
the console.

7. Add the Token decorator to the Student class:

@Token

class Student {//…

8. Execute the code, and notice that it outputs true twice to the console.

9. Change the Token function to a factory function that takes a
Boolean parameter:

function Token(hasToken: boolean) {

 return function (constructor: Function) {

 constructor.prototype.token = hasToken;

 }

}

10. Modify the Teacher class Token decorator to have a true Boolean parameter:

@Token(true)

class Teacher {//…

11. Modify the Student class Token decorator to have a false
Boolean parameter:

@Token(false)

class Student {//…

12. Execute the code by running npx ts-node school-token.ts on the
console, and notice that it outputs true and false to the console as shown:

Does the teacher have a token? true

Does the student have a token? false

Class Decorators | 273

In this exercise, you saw how to add a class decorator that adds a property to a
decorated class. You then changed the decorator to use a factory and added two
different parameters for two decorated classes. At the end, you verified that the
injected properties exist on the decorated classes via the prototype chain and that
they have the values you specified.

Constructor Extension

Using property injection enabled you to add behaviors and data to the objects you
decorate using their prototypes. That is OK, but sometimes you might want to add
data to the constructed objects themselves. You can accomplish this with inheritance,
but you can also wrap the inheritance with a decorator.

If you return a function from the decorator, that function will be used as a
replacement constructor for the class. While this gives you the superpower to change
the class completely, the main goal of this approach is to enable you to augment
the class with some new behaviors or data, so let's use automatic inheritance to
add properties to the class. A decorator that will add the token property not on the
prototype but on the constructed objects themselves would look like this:

type Constructable = {new(...args: any[]):{}};

function Token(hasToken: boolean) {

 return function <T extends Constructable>(constructor: T) {

 return class extends constructor {

 token: boolean = hasToken;

 }

 }

}

The syntax for doing that looks a bit strange at first, as you are using a generic
parameter to make sure that the class you return from your decorator will still be
compatible with the constructor that was passed as a parameter. Aside from the
syntax, the important part to remember is that the code token: boolean =
hasToken; will be executed in addition to the regular constructor.

274 | Decorators

Exercise 7.02: Using a Constructor Extension Decorator

In this exercise, you will be creating a constructor extension decorator factory for the
Token decorator. Starting from the Teacher class code, we'll add a token factory
called Token that will augment the class by adding a token Boolean property. We'll
create an object of the provided class and verify that the object indeed has its own
token property. The following steps will help you with the solution:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/DhVfC. This
repository contains two files: school-token.start.ts and school-
token.end.ts. The former contains the code up to step 3 of this
exercise, and the latter contains the final code of the exercise.

1. Open Visual Studio Code, create a new file in a new directory (Exercise02),
and save it as school-token.ts.

2. Enter the following code in school-token.ts:

class Teacher {

 constructor (public id: number, public name: string) {}

 // teacher specific code

}

/////////////////////////

const teacher = new Teacher(1, "John Smith");

console.log("Do you have a token:", teacher["token"]);

console.log("Do you have a token property: ", teacher.
hasOwnProperty("token"));

3. Execute the code, and notice that it outputs undefined and false to
the console:

Do we have a token: undefined

Do we have a token property: false

https://packt.link/DhVfC

Class Decorators | 275

4. Add a Token function at the end of the file:

type Constructable = {new(...args: any[]):{}};

function Token(hasToken: boolean) {

 return function <T extends Constructable>(constructor: T) {

 return class extends constructor {

 token: boolean = hasToken;

 }

 }

}

5. Decorate the Teacher class using the Token decorator factory:

@Token(true)

class Teacher {

6. Execute the code, and notice that it outputs true twice to the console:

Do we have a token: true

Do we have a token property: true

In this exercise, you saw how to change the provided class constructor to run
custom code while instantiating an object. You used that to inject a property on the
constructed object itself, and then you verified that the injected properties exist on
objects of the decorated class and that they have the value you specified.

Constructor Wrapping

Another common scenario for class decorators is the need to just run some code
when an instance of a class is being created, for example, to add some logging
when an instance of a class is created. You do not need or want to change the
class behavior in any way, but you do want to be able to somehow piggyback on
the process. This means that you need to execute some code whenever a class
constructor is being run – you don't need to change the existing constructor.

In this case, the solution is to have the decorator function return a new constructor
that executes the new code needed by the decorator itself as well as the original
constructor. For example, if you want to write some text to the console each time you
instantiate a decorated class, you can use this decorator:

276 | Decorators

Example_ConstructorWrapping.ts

1 type Constructable = { new (...args: any[]): {} };
2
3 function WrapConstructor(message: string) {
4 return function <T extends Constructable>(constructor: T) {
5 const wrappedConstructor: any = function (...args: any[]) {
6 console.log(`Decorating ${message}`);
7 const result = new constructor(...args);
8 console.log(`Decorated ${message}`);
9 return result;
10 };
11 wrappedConstructor.prototype = constructor.prototype;
12 return wrappedConstructor;
13 };
14 }

Link to the preceding example: https://packt.link/kgAme.

This decorator factory will generate a decorator using a provided message. Since
you're returning a new constructor, you have to use a generic parameter to make
sure that the constructor you return from your decorator will still be compatible
with the constructor that was passed as a parameter. You can create a new
wrappedConstructor function within which you can both call custom code (the
Decorating and Decorated messages) and actually create the object by calling
new on the original constructor, passing in the original arguments.

You should note the following here: it's possible to add custom code both pre- and
post-creation of the object. In the preceding example, the Decorating message
will be printed to the console before the object is created, while the Decorated
message will be printed to the console after the creation is finished.

Another very important thing is that this kind of wrapping breaks the prototype chain
of the original object. If the object you decorate thus uses any properties or methods
that were available through the prototype chain, they would be missing, changing the
behavior of the decorated class. Since that is exactly the opposite of what you wanted
to achieve with constructor wrapping, you need to reset the chain. That is done
by setting the prototype property of the newly created wrapper function to the
prototype of the original constructor.

https://packt.link/kgAme

Class Decorators | 277

So, let's use a decorator on a client class, like this:

@WrapConstructor("decorator")

class Teacher {

 constructor(public id: number, public name: string) {

 console.log("Constructing a teacher class instance");

 }

}

Next, you can create an object of the Teacher class:

const teacher = new Teacher(1, "John");

When you run the file, you will see the following written to the console:

Decorating decorator

Constructing a teacher class instance

Decorated decorator

Exercise 7.03: Creating a Logging Decorator for a Class

In this exercise, you'll be creating a constructor wrapping decorator factory for the
LogClass decorator. Starting from the Teacher class code, you'll add a decorator
factory called LogClass that will wrap the class constructor with some logging code.
You'll create an object of the provided class and verify that the logging methods are
actually called. The following steps will help you with the solution:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/vBLMg.

1. Open Visual Studio Code, create a new file in a new directory (Exercise03),
and save it as teacher-logging.ts.

2. Enter the following code in teacher-logging.ts:

class Teacher {

 constructor(public id: number, public name: string) {

 console.log("Constructing a teacher");

 }

https://packt.link/vBLMg

278 | Decorators

}

/////////////////////////

const teacher = new Teacher(1, "John Smith");

3. Execute the code, and notice that it outputs Constructing a teacher to
the console.

4. Next, create the decorator. First, you need to add the Constructable
type definition:

type Constructable = { new (...args: any[]): {} };

5. Now, add a definition of your decorator factory:

function LogClass(message: string) {

 return function <T extends Constructable>(constructor: T) {

 return constructor;

 };

}

In the preceding code, the constructor takes in a string parameter and returns
a decorator function. The decorator function itself will initially just return the
original, unchanged constructor of the decorated class.

6. Decorate the Teacher class using the LogClass decorator with an
appropriate message parameter:

@LogClass("Teacher decorator")

class Teacher {

 constructor(public id: number, public name: string) {

 console.log("Constructing a teacher");

 }

}

7. Execute the code, and notice that there are no changes to the behavior.

8. Now, add a logger object to your application:

const logger = {

 info: (message: string) => {

 console.log(`[INFO]: ${message}`);

 },

};

Class Decorators | 279

In actual production-grade code implementation, you might log to a database, a
file, a third-party service, and so on. In the preceding step, you are simply logging
to the console.

9. Next, use the logger object to add a wrapping constructor to your decorator:

 return function <T extends Constructable>(constructor: T) {

 const loggingConstructor: any = function(...args: any[]){

 logger.info(message);

 return new constructor(...args);

 }

 loggingConstructor.prototype = constructor.prototype;

 return loggingConstructor;

 };

10. Execute the code and verify that you get a logging message to the console:

[INFO]: Teacher decorator

Constructing a teacher

11. Construct a few more objects and verify that the constructor runs each time an
object is created:

for (let index = 0; index < 10; index++) {

 const teacher = new Teacher(index +1, "LouAnne Johnson");

}

You'll see the following output when you execute the file:

[INFO]: Teacher decorator

Constructing a teacher

[INFO]: Teacher decorator

Constructing a teacher

[INFO]: Teacher decorator

Constructing a teacher

[INFO]: Teacher decorator

Constructing a teacher

[INFO]: Teacher decorator

Constructing a teacher

[INFO]: Teacher decorator

Constructing a teacher

[INFO]: Teacher decorator

Constructing a teacher

280 | Decorators

In this exercise, you saw how to wrap the provided class constructor so that
it can run custom code, but without changing the construction of the objects.
Through wrapping, you added logging capabilities to a class that did not have any.
You constructed objects of that class and verified that the logging functionality
was operational.

Method and Accessor Decorators
A method decorator is a decorator function that is applied to a single method of a
class. In a method decorator, you can observe, modify, or outright replace a method
definition with one provided by the decorator. When a method decorator is called, it
receives three parameters: target, propertyKey, and descriptor:

• target: Since methods can be both instance methods (defined on instances
of the class) and static methods (defined on the class itself), target can be
two different things. For instance methods, it's the prototype of the class. For
static methods, it's the constructor function of the class. Usually, you type this
parameter as any.

• propertyKey: This is the name of the method you're decorating.

• descriptor: This is the property descriptor of the method you're decorating.
The PropertyDescriptor interface is defined with this:

interface PropertyDescriptor {

 configurable?: boolean;

 enumerable?: boolean;

 value?: any;

 writable?: boolean;

 get?(): any;

 set?(v: any): void;

}

This interface defines the value of an object property, as well as the property's
properties (whether the property is configurable, enumerable, and writable). We'll
also be using a typed version of this interface, TypedPropertyDescriptor, which
is defined as shown:

interface TypedPropertyDescriptor<T> {

 enumerable?: boolean;

 configurable?: boolean;

 writable?: boolean;

Method and Accessor Decorators | 281

 value?: T;

 get?: () => T;

 set?: (value: T) => void;

}

Note that, in JavaScript, and subsequently TypeScript, property accessors are just
special methods that manage access to a property. Everything that is applicable to
decorating methods is also applicable to decorating accessors. Any accessor specifics
will be covered separately.

If you set up a decorator on a method, we'll be getting the PropertyDescriptor
instance of the method itself, and the value property of the descriptor will give
us access to its body. If you set up a decorator on an accessor, we'll be getting the
PropertyDescriptor instance of the corresponding property, with its get and
set properties respectively set to the getter and setter accessors. This means that
if you're decorating property accessors, you don't have to separately decorate the
getter and the setter, as any decoration of one is a decoration on the other. In fact,
TypeScript will issue the following error if you do so:

TS1207: Decorators cannot be applied to multiple get/set accessors of the
same name.

The method decorators do not have to return a value, as most of the time you can
do the desired actions by modifying the property descriptor. If you do return a value,
however, that value will replace the originally provided property descriptor.

Decorators on Instance Functions

As described in the preceding section, any function that takes the target,
propertyKey, and descriptor parameters can be used to decorate methods
and property accessors. So, let's have a function that will simply log the target,
propertyKey, and descriptor parameters to the console:

Example_Decorators_Instance_Functions.ts

1 function DecorateMethod(target: any, propertyName: string,
2 descriptor: PropertyDescriptor) {
3 console.log("Target is:", target);
4 console.log("Property name is:", propertyName);
5 console.log("Descriptor is:", descriptor);
6 }

Link to the preceding example: https://packt.link/gle5U.

https://packt.link/gle5U

282 | Decorators

You can use this function to decorate a class' methods. This is an extremely simple
decorator, but you can use it to investigate the usage of method decorators.

Let's start with a simple class:

class Teacher {

 constructor (public name: string){}

 private _title: string = "";

 public get title() {

 return this._title;

 }

 public set title(value: string) {

 this._title = value;

 }

 public teach() {

 console.log(`${this.name} is teaching`)

 }

}

The class has a constructor, a method called teach, and a title property with
a defined getter and setter. The accessors simply pass through control to the
_title private field. You can add the decorator to the teach methods using the
following code:

 @DecorateMethod

 public teach() {

 //

When you run your code (no need to instantiate the class), you'll get the following
output on the console:

 Target is: {}

 Property name is: teach

 Descriptor is: {

 value: [Function: teach],

 writable: true,

 enumerable: false,

 configurable: true

 }

Method and Accessor Decorators | 283

Consider the following snippets in which you apply the decorator to the setter or
getter (either one will work fine, but not both):

 @DecorateMethod

 public get title() {

 //

Or:

 @DecorateMethod

 public set title(value: string) {

 //

You will get the following output when you run the code using either of the
preceding suggestions:

 Target is: {}

 Property name is: title

 Descriptor is: {

 get: [Function: get title],

 set: [Function: set title],

 enumerable: false,

 configurable: true

 }

Note that you cannot add a method decorator on the constructor itself, as you will get
an error:

 TS1206: Decorators are not valid here.

If you need to change the behavior of the constructor, you should use
class decorators.

Exercise 7.04: Creating a Decorator That Marks a Function Enumerable

In this exercise, you will create a decorator that will be able to change the
enumerable state of the methods and accessors that it decorates. You will use
this decorator to set the enumerable state of some functions in a class that you'll
write, and finally, you'll verify that when you enumerate the properties of the object
instance, you get the modified methods as well.

284 | Decorators

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/1nAff. This
repository contains two files: teacher-enumerating.start.ts and
teacher-enumerating.end.ts. The former contains the code up to
step 5 of this exercise, and the latter contains the final code of the exercise.

1. Open Visual Studio Code, create a new file in a new directory (Exercise04),
and save it as teacher-enumerating.ts.

2. Enter the following code in teacher-enumerating.ts:

class Teacher {

 constructor (public name: string){}

 private _title: string = "";

 public get title() {

 return this._title;

 }

 public set title(value: string) {

 this._title = value;

 }

 public teach() {

 console.log(`${this.name} is teaching`)

 }

}

3. Write code that will instantiate an object of this class:

const teacher = new Teacher("John Smith");

4. Write code that will enumerate all the keys in the created object:

for (const key in teacher) {

 console.log(key);

}

https://packt.link/1nAff

Method and Accessor Decorators | 285

5. Execute the file and verify that the only keys that are displayed on the console
are name and _title.

6. Add a decorator factory that takes a Boolean parameter and generates a method
decorator that will set the enumerable status to the provided parameter:

function Enumerable(value: boolean) {

 return function (target: any, propertyName: string, descriptor:
PropertyDescriptor) {
 descriptor.enumerable = value;

 }

};

7. Use the decorator to decorate the title getter or setter accessors and the
teach method:

 @Enumerable(true)

 public get title() {

 return this._title;

 }

 public set title(value: string) {

 this._title = value;

 }

 @Enumerable(true)

 public teach() {

 console.log(`${this.name} is teaching`)

 }

8. Rerun the code and verify that the title and teach properties are
being enumerated:

name

_title

title

teach

In this exercise, you saw how to add a create a method decorator factory and how to
apply it to an instance method or an instance property accessor. You learned how to
make a property enumerable, and you used that knowledge to set the enumerable
state of the functions of a class. Finally, you enumerated all the properties of a class.

286 | Decorators

Decorators on Static Functions

Just like with instance methods, decorators can be used with static methods as well.
You add a static method to your Teacher class like this:

Example_Decorator_StaticFunctions.ts

1 class Teacher {
2 //.....
3
4 public static showUsage() {
5 console.log("This is the Teacher class")
6 }
7 //.....

Link to the preceding example https://packt.link/Ckuct.

We are allowed to use method decorators on the static methods as well. So, you can
add the DecorateMethod decorator using the following code:

 @DecorateMethod

 public static showUsage() {

 //......

When you run the code, you will get output similar to this:

Target is: [Function: Teacher]

Property name is: showUsage

Descriptor is: {

 value: [Function: showUsage],

 writable: true,

 enumerable: false,

 configurable: true

}

The principal difference with the instance methods is the target parameter.
Instance methods and accessors are generated on the class prototype, and
consequently, when using a method/accessor decorator, you receive the class
prototype as a target parameter. Static methods and accessors are generated
on the class variable itself, and consequently, when using a method/accessor
decorator, you receive the class variable in the guise of the constructor function as a
target parameter.

https://packt.link/Ckuct

Method and Accessor Decorators | 287

Note that this is the exact same object that you're getting as a class decorator
parameter. You can even use it in much the same way. However, in method
decorators, the focus should be on the actual property we've decorated. It is
considered a bad practice to manipulate the constructor inside a non-class decorator.

Method Wrapping Decorators

The most common usage of method decorators is to use it to wrap the original
method, adding some custom cross-cutting code. Examples would be adding some
general error handling or adding automatic logging capabilities.

In order to do that, you need to change the function that is being called. You can do
that using the value property of method property descriptors, and by using the get
and set properties of the property accessor descriptors.

Exercise 7.05: Creating a Logging Decorator for a Method

In this exercise, you'll be creating a decorator that will log each time a decorated
method or accessor is called. You will use this decorator to add logging to the
Teacher class and you'll verify that each time you use the decorated methods and
property accessors, you get an appropriate log entry:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/rmEZi.

1. Open Visual Studio Code, create a new file in a new directory (Exercise05),
and save it as teacher-logging.ts.

2. Enter the following code in teacher-logging.ts:

class Teacher {

 constructor (public name: string){}

 private _title: string = "";

 public get title() {

 return this._title;

 }

https://packt.link/rmEZi

288 | Decorators

 public set title(value: string) {

 this._title = value;

 }

 public teach() {

 console.log(`${this.name} is teaching`)

 }

}

/////////////////

const teacher = new Teacher("John Smith");

teacher.teach(); // we're invoking the teach method

teacher.title = "Mr." // we're invoking the title setter

console.log(`${teacher.title} ${teacher.name}`); // we're invoking
the title getter

3. Execute the code, and notice that it outputs John Smith is teaching and
Mr. John Smith to the console.

4. Create a method decorator factory that can wrap any method, getter or setter,
with a logging statement. It will take a string parameter and return a decorator
function. Initially, you won't make any changes to the property descriptor:

function LogMethod(message: string) {

 return function (target: any, propertyName: string, descriptor:
PropertyDescriptor) {
 };

}

5. Decorate the teach method and the title get accessor using the LogMethod
decorator with an appropriate message parameter:

 @LogMethod("Title property")

 public get title() {

 //...

 @LogMethod("Teach method")

 public teach() {

 //...

6. Execute the code, and notice that there are no changes to the behavior.

Method and Accessor Decorators | 289

7. Now, add a logger object to your application:

const logger = {

 info: (message: string) => {

 console.log(`[INFO]: ${message}`);

 },

};

In an actual production-grade implementation, you might log to a database, a
file, a third-party service, and so on. In the preceding step, you are simply logging
to the console.

8. Add code to the decorator factory that will wrap the property descriptors,
value, get, and set properties (if they are present):

function LogMethod(message: string) {

 return function (target: any, propertyName: string, descriptor:
PropertyDescriptor) {
 if (descriptor.value) {

 const original = descriptor.value;

 descriptor.value = function (...args: any[]) {

 logger.info(`${message}: Method ${propertyName}
invoked`);
 // we're passing in the original arguments to the
method
 return original.apply(this, args);

 }

 }

 if (descriptor.get) {

 const original = descriptor.get;

 descriptor.get = function () {

 logger.info(`${message}: Getter for ${propertyName}
invoked`);
 // getter accessors do not take parameters

 return original.apply(this, []);

 }

 }

 if (descriptor.set) {

 const original = descriptor.set;

 descriptor.set = function (value: any) {

 logger.info(`${message}: Setter for ${propertyName}
invoked`);

290 | Decorators

 // setter accessors take a single parameter, i.e. the
value to be set
 return original.apply(this, [value]);

 }

 }

 }

}

9. Execute the code and verify that you get logging messages to the console when
you call the method as well as when you use the title property:

[INFO]: Teach method: Method teach invoked

John Smith is teaching

[INFO]: Title property: Setter for title invoked

[INFO]: Title property: Getter for title invoked

Mr. John Smith

In this exercise, you saw how to wrap the provided definitions of methods and
property accessors class in such a way that you could run custom code on every
invocation without changing the behavior of the functions themselves. You used that
to add logging capabilities to functions that did not have any. You constructed objects
of that class and verified that the logging functionality is operational.

Activity 7.01: Creating Decorators for Call Counting
As a developer of a backend service for a website, you are tasked with creating
a solution that will enable the operations department to have clear auditing on
the behavior of the service. For that, the app is required to have a tally of all class
instantiations and method invocations.

In this activity, you're going to create class and method decorators that can be
used to count class instantiations and method invocations. You will create a class
that contains data about a person and use the decorators to count how many such
objects were created and how many times each method was called. After you have
constructed several objects and used their properties, take a look at the values of
the counters.

The aim of this activity is to demonstrate the uses of class and method decorators in
order to address a cross-cutting concern of your application, without changing the
functionality of the given class. You should have a detailed statistic of the life cycles of
your objects, without adding any complexity to the business logic.

Activity 7.01: Creating Decorators for Call Counting | 291

The following steps should help you with the solution:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this activity can also be downloaded from https://packt.link/UK49t.

1. Create a class called Person with public properties named firstName,
lastName, and birthday.

2. Add a constructor that initializes the properties via the constructor parameters.

3. Add a private field called _title and expose it via a getter and setter as a
property called title.

4. Add a method called getFullName that will return the full name of a person.

5. Add a method called getAge that will return the current age of the person (by
subtracting the birthday from the current year).

6. Create a global object called count and initialize it to the empty object. This
will be your state variable, where you store the counts for every instantiation
and invocation.

7. Create a constructor wrapping decorator factory called CountClass that will
take a string parameter called counterName. We'll use that parameter as a key
into the count object.

8. Inside the wrapping code, increase the count object's property defined in the
counterName parameter by 1.

9. Don't forget to set the prototype chain of the wrapped constructor.

10. Create a method wrapping decorator factory called CountMethod that will take
a string parameter called counterName.

11. Add checks for whether the descriptor parameter has value, get, and set
properties. You need to cover both the cases where this decorator is used as an
accessor and as a method decorator.

https://packt.link/UK49t

292 | Decorators

12. In each respective branch, add code that wraps the method.

13. Inside the wrapping code, increase the count object's property defined in the
counterName parameter by 1.

14. Decorate the class using the CountClass decorator, with a person parameter.

15. Decorate getFullName, getAge, and the title property getter with the
CountMethod decorator, using the person-full-name, person-age, and
person-title parameters, respectively. Note that you need to decorate only
one of the property accessors.

16. Write code outside the class that will instantiate three person objects.

17. Write code that will call the getFullName and getAge methods on the objects

18. Write code that will check whether the title property is empty and set it to
something if it is.

19. Write code that will log the count object to the console in order to see if your
decorators are running correctly.

The expected output is as follows:

{

 person: 3,

 "person-full-name": 3,

 "person-age": 3,

 "person-title": 6

}

This activity demonstrates the power of using decorators to extend and augment
the capabilities of your classes without polluting the code. You were able to inject
custom code execution into your objects, without changing any of the underlying
business logic.

Note

The solution to the activity can be found via this link.

Using Metadata in Decorators | 293

Using Metadata in Decorators
So far, you've been decorating classes and methods. These are basically pieces of
code that get executed, and you have been able to change and augment the code
that got executed. But your code consists not only of "active," live code, but of other
definitions as well – in particular, your classes have fields, and your methods have
parameters. In the activity before this section, you were able to detect whenever
the title property was accessed because you had a method that was getting the
value, and a method that was setting the value – so you piggybacked your code to the
already existing "active" code. But how do you decorate the "passive" parts of your
program? You cannot attach code that runs when your "passive" code gets executed,
because frankly there's nothing to execute in public firstName: string. It's a
simple definition.

You cannot attach any code that gets executed for your "passive code," but what
you can do using decorators is add some data to some global object regarding the
decorated "passive" piece of code. In Activity 7.01: Creating Decorators for Call Counting,
you defined a global count object and used that in your decorators to keep track of
the executions. That approach works, but it requires creating a global variable, which
is bad in most cases. It would be much cleaner if you were able to define some kind
of properties on the methods and classes themselves. But, on the other hand, you
don't want to add too many properties that are available alongside the business logic
code – the possibility of incidental error is too high. What you need is to be able to
somehow add metadata to your classes and methods.

Fortunately, this is a common problem and there is a proposal to add proper
metadata support to JavaScript. In the meantime, there is a polyfill library called
reflect-metadata that can be used.

Note

For more information on the reflect-metadata library, visit https://
www.npmjs.com/package/reflect-metadata.

What this library does, in essence, is attach a special property to your classes that
gives us a place to store, retrieve, and work with metadata about your class.

https://www.npmjs.com/package/reflect-metadata
https://www.npmjs.com/package/reflect-metadata

294 | Decorators

In TypeScript, in order to use this feature, you have to specify an additional
compiler flag, either via the command line or via tsconfig.json. That is the
emitDecoratorMetadata flag, which needs to be set to true in order to work
with the metadata methods.

Reflect Object

The API of the reflect-metadata library is straightforward, and mostly you can
focus on the following methods:

• Reflect.defineMetadata: Defines a piece of metadata on a class or
a method

• Reflect.hasMetadata: Returns a Boolean indicating whether a certain piece
of metadata is present

• Reflect.getMetadata: Returns the actual piece of metadata, if present

Consider the following code:

class Teacher {

 constructor (public name: string){}

 private _title: string = "";

 public get title() {

 return this._title;

 }

 public set title(value: string) {

 this._title = value;

 }

 public teach() {

 console.log(`${this.name} is teaching`)

 }

}

Here you have a class called Teacher that has a simple private field, _title, which
has get and set accessor methods for a property called title, and a method
called teach that logs to the console that the teacher is, in fact, teaching.

Using Metadata in Decorators | 295

You can define a metadata key called call-count on the Teacher class and set its
value to 0 by executing the following call to defineMetadata:

Reflect.defineMetadata("call-count", 0, Teacher);

If you want to add a metadata key called call-count, not on the Teacher
class itself but on the teach method, you could do so with the following call to
defineMetadata:

Reflect.defineMetadata("call-count", 10, Teacher, "teach");

This will define a metadata key called call-count on the Teacher class'
teach property and set its value to 10. You can retrieve these values using the
following commands:

Reflect.getMetadata("call-count", Teacher); // will return 0

Reflect.getMetadata("call-count", Teacher, "teach"); // will return 10

In essence, you can create a method that will register a call of a method with the
following code:

function increaseCallCount(target: any, propertyKey: string) {

 if (Reflect.hasMetadata("call-count", target)) {

 const value = Reflect.getMetadata("call-count", target,
propertyKey);
 Reflect.defineMetadata("call-count", value+1, target, propertyKey)

 } else {

 Reflect.defineMetadata("call-count", 1, target, propertyKey)

 }

}

This code will first call the hasMetadata method, to check whether you have
already defined a value for the call-count metadata. If that is true, the
hasMetadata method will call getMetadata to get the current value and then call
defineMetadata to re-define the metadata property with an increased (value+1)
value. If you did not have such a metadata property, the defineMetadata method
will define it with a value of 1.

When called with increaseCallCount(Teacher, "teach");, it will
successfully increase the call count of the teach method of the Teacher class. The
metadata added to the class will in no way hinder the behaviors that the class already
has, so any code that is being executed won't be affected.

296 | Decorators

Exercise 7.06: Adding Metadata to Methods via Decorators

In this exercise, we'll create a simple class and apply some metadata for describing
its methods. After you have done this, you will write a function that given a class, will
display its available descriptions:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/JG4F8.

1. Open Visual Studio Code, create a new file in a new directory (Exercise06),
and save it as calculator-metadata.ts.

2. Enter the following code in calculator-metadata.ts:

class Calculator {

 constructor (public first: number, public second: number) {}

 public add() {

 return this.first + this.second;

 }

 public subtract() {

 return this.first – this.second;

 }

 public multiply() {

 return this.first / this.second;

 }

 public divide() {

 return this.first / this.second;

 }

}

https://packt.link/JG4F8

Using Metadata in Decorators | 297

3. Next, add metadata descriptions for the class and some of its methods:

Reflect.defineMetadata("description", "A class that offers common
operations over two numbers", Calculator);
Reflect.defineMetadata("description", "Returns the result of adding two
numbers", Calculator, "add");
Reflect.defineMetadata("description", "Returns the result of
subtracting two numbers", Calculator, "subtract");
Reflect.defineMetadata("description", "Returns the result of dividing
two numbers", Calculator, "divide");

4. Define a function that when given a class will reflect upon it and extract and
display the class' description metadata:

function showDescriptions (target: any) {

 if (Reflect.hasMetadata("description", target)) {

 const classDescription = Reflect.getMetadata("description",
target);
 console.log(`${target.name}: ${classDescription}`);

 }

}

5. Call the function using showDescriptions(Calculator); and verify that it
will display the following output:

Calculator: A class that offers common operations over two numbers

In order to get a list of all methods of a class, we'll have to use the Object.
getOwnPropertyNames function. Additionally, since the methods are
actually defined on the prototype of the class, the correct line that gets
all methods names of a class is const methodNames = Object.
getOwnPropertyNames(target.prototype);.

6. Next, loop over the returned array and check each method for a description. The
showDescription function will now have the following format:

function showDescriptions (target: any) {

 if (Reflect.hasMetadata("description", target)) {

 const classDescription = Reflect.getMetadata("description",
target);
 console.log(`${target.name}: ${classDescription}`);

 const methodNames = Object.getOwnPropertyNames(target.
prototype);
 for (const methodName of methodNames) {

 if (Reflect.hasMetadata("description", target,
methodName)) {
 const description = Reflect.getMetadata("description",
target, methodName);

298 | Decorators

 console.log(` ${methodName}: ${description}`);

 }

 }

 }

}

7. Call the function again and verify that it will display the following output:

Calculator: A class that offers common operations over two numbers

 add: Returns the result of adding two numbers

 subtract: Returns the result of subtracting two numbers

 divide: Returns the result of dividing two numbers

Note that you're not displaying anything for the multiply method, as you did not
add any metadata for it.

In this exercise, you learned how to add metadata to classes and methods and how to
check its existence and, if present, to retrieve it. You also managed to get a list of all
the methods of a given class.

Property Decorators
A property decorator is a decorator function that is applied to a single property of
a class. Unlike in a method or class decorators, you cannot modify or replace the
property definition, but you can indeed observe it.

Note

Since you receive the constructor function in the decorator, this is not strictly
true. You could change the code of the class, but it's extremely inadvisable.

When a property decorator is called, it receives two parameters: target
and propertyKey:

• target: Since properties can be both instance properties (defined on instances
of the class) and static properties (defined on the class itself), target can be
two different things. For instance properties, it's the prototype of the class. For
static properties, it's the constructor function of the class. Usually, you would
type this parameter as any.

• propertyKey: This is the name of the property you're decorating.

Property Decorators | 299

In contrast to the method decorators, you're not receiving a property descriptor
parameter, because, plainly, there isn't one available. Also, because you do not return
any code that can be replaced, the return value of a property decorator is ignored.

For example, you can define a simple property decorator factory that just logs a
message to the console to notify that the property is actually decorated:

Example_PropertyDecorators.ts

1 function DecorateProperty(message: string) {
2 return function (target: any, propertyKey: string) {
3 console.log(`Decorated
4 ${target.constructor.name}.${propertyKey} with '${message}'`);
5 }
6 }

Link to the preceding example: https://packt.link/HkkNi.

Consider the following class definitions:

class Teacher {

 public id: number;

 public name: string;

 constructor(id: number, name: string) {

 this.id = id;

 this.name = name;

 }

}

 You can annotate the id and name properties using the following code:

 @DecorateProperty("ID")

 public id: number;

 @DecorateProperty("NAME")

 public name: string;

If you now execute the code (we don't need to call anything; it will be called by the
TypeScript engine), you obtain the following output:

Decorated Teacher.id with 'ID'

Decorated Teacher.name with 'NAME'

https://packt.link/HkkNi

300 | Decorators

Note that you did not create any objects of the teacher class, or call any methods.
The decorators executed when the class was defined. Since property decorators are
passive, usually you'll use them to feed some kind of data into some mechanism that
will use it. One of the common approaches is to combine the passive decorators with
one or several active decorators, that is, class and method decorators.

Note

This is the case in Angular, for example, where the passive @Input and @
Output decorators are combined with the active @Component decorator.

Another common use case is to have an additional mechanism that will get the data
provided by the decorators and use it. For example, you can have the decorators
recording some metadata, and then have another function that reads and uses
that metadata.

Exercise 7.07: Creating and Using a Property Decorator

In this exercise, you'll create a simple property decorator factory that will provide
each property with a description. After you have done this, you will write a function
that given a class will display its available descriptions:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section. The code file for
this exercise can also be downloaded from https://packt.link/1WU6d.

1. Open Visual Studio Code, create a new file in a new directory (Exercise07),
and save it as teacher-properties.ts.

2. Enter the following code in teacher-properties.ts:

class Teacher {

 public id: number;

 public name: string;

 constructor(id: number, name: string) {

https://packt.link/1WU6d

Property Decorators | 301

 this.id = id;

 this.name = name;

 }

}

3. Add a decorator factory that takes a string parameter and generates a property
decorator that will add a metadata description field to the class for the
given property:

function Description(message: string) {

 return function (target: any, propertyKey: string) {

 Reflect.defineMetadata("description", message, target,
propertyKey)
 }

}

4. Next, annotate the properties of the Teacher class using the description:

 @Description("This is the id of the teacher")

 public id: number;

 @Description("This is the name of the teacher")

 public name: string;

5. Define a function that, when given an object, will reflect upon it and extract and
display the description metadata for the object's properties:

function showDescriptions (target: any) {

 for (const key in target) {

 if (Reflect.hasMetadata("description", target, key)) {

 const description = Reflect.getMetadata("description",
target, key);
 console.log(` ${key}: ${description}`);

 }

 }

}

6. Create an object of the Teacher class:

const teacher = new Teacher(1, "John Smith");

7. Pass that object to the showDescriptions function:

showDescriptions(teacher);

302 | Decorators

8. Execute the code and verify that the descriptions are displayed:

 id: This is the id of the teacher

 name: This is the name of the teacher

In this exercise, you learned how to add metadata to properties using property
decorators and how to use property decorators to add quick basic documentation to
your classes.

Parameter Decorators
A parameter decorator is a decorator function that is applied to a single parameter
of a function call. Just like property decorators, parameter decorators are passive,
that is, they can be used only to observe values, but not to inject and execute code.
The return value of a parameter decorator is similarly ignored. As a consequence,
parameter decorators are almost exclusively used in conjunction with other,
active decorators.

When a parameter decorator is called, it receives three parameters: target,
propertyKey, and parameterIndex:

• target: The behavior for this parameter is identical to the decorators on the
corresponding method. There is an exception if the parameter is on a class'
constructor, but that is explained shortly.

• propertyKey: This is the name of the method whose parameter you're
decorating (the constructor exception is explained shortly).

• parameterIndex: This is the ordinal index of the parameter in the function's
parameter list (starting with zero for the first parameter).

So, let's have a function that will simply log the target, propertyKey, and
parameterIndex parameters to the console:

Example_ParameterDecorators.ts

1 function DecorateParam(target: any, propertyName: string,
2 parameterIndex: number) {
3 console.log("Target is:", target);
4 console.log("Property name is:", propertyName);
5 console.log("Index is:", parameterIndex);
6 }

Link to the preceding example: https://packt.link/5vuL2.

https://packt.link/5vuL2

Parameter Decorators | 303

You can use this function to decorate a function's parameters and can investigate the
usage of parameter decorators. Let's start with a simple class:

class Teacher {

 public id: number;

 public name: string;

 constructor(id: number, name: string) {

 this.id = id;

 this.name = name;

 }

 public getFullName(title: string, suffix: string) {

 return `${title} ${this.name}, ${suffix}`

 }

}

The class has a constructor that takes two parameters, id and name, and a method
called getFullName, which takes two parameters, title and suffix. Say you
add your decorator to the first parameter of the getFullName methods, using this:

 public getFullName(@DecorateParam title: string, suffix: string) {

 //

If you run your code (no need to instantiate the class), you'll get the following output
on the console:

Target is: Teacher {}

Property name is: getFullName

Index is: 0

We can also apply parameter decorators to the parameters of the constructor
function itself. Say you decorate the second constructor parameter, like this:

 constructor(id: number, @DecorateParam name: string) {

 //

You will get the following output when you run the code:

Target is: [Function: Teacher]

Property name is: undefined

Index is: 1

304 | Decorators

Note that in this case, the target is not the prototype of the class, but the class
constructor itself. Also, when decorating constructor parameters, the name of the
property is undefined.

Exercise 7.08: Creating and Using a Parameter Decorator

In this exercise, you will create a parameter decorator that will indicate that a certain
parameter is required; that is, it should not have an empty value. You will also create
a validation decorator for the method, so that the validation can actually take place.
We'll create a class that uses the decorators, and you will try to call the method with
both valid and invalid values:

Note

Before you begin, make sure you have set up the correct compiler options
as mentioned in the Setting Up Compiler Options section.The code file for
this exercise can also be downloaded from https://packt.link/Hf3fv.

1. Open Visual Studio Code, create a new file in a new directory (Exercise08),
and save it as teacher-parameters.ts.

2. Enter the following code in teacher-parameters.ts:

class Teacher {

 public id: number;

 public name: string;

 constructor(id: number, name: string) {

 this.id = id;

 this.name = name;

 }

 public getFullName(title: string, suffix: string) {

 return `${title} ${this.name}, ${suffix}`

 }

}

https://packt.link/Hf3fv

Parameter Decorators | 305

3. Create a parameter decorator called Required that will add the index of the
parameter to the required metadata field to the class for the given property:

function Required(target: any, propertyKey: string, parameterIndex:
number) {
 if (Reflect.hasMetadata("required", target, propertyKey)) {

 const existing = Reflect.getMetadata("required", target,
propertyKey) as number[];
 Reflect.defineMetadata("required", existing.
concat(parameterIndex), target, propertyKey);
 } else {

 Reflect.defineMetadata("required", [parameterIndex], target,
propertyKey)
 }

}

Here, if the metadata already exists, that means that there is another required
parameter. If so, you load it and concatenate your parameterIndex. If
there is no previous metadata, you define it with an array consisting of your
parameterIndex.

4. Next, create a method decorator that will wrap the original method and check all
required parameters before calling the original method:

function Validate(target: any, propertyKey:string, descriptor:
PropertyDescriptor) {
 const original = descriptor.value;

 descriptor.value = function (...args: any[]) {

 // validate parameters

 if (Reflect.hasMetadata("required", target, propertyKey)) {

 const requiredParams = Reflect.getMetadata("required",
target, propertyKey) as number[];
 for (const required of requiredParams) {

 if (!args[required]) {

 throw Error(`The parameter at position
${required} is required`)
 }

 }

 }

 return original.apply(this, args);

 }

}

If any of your required parameters has a falsy value, instead of executing the
original method, your decorator will throw an error.

306 | Decorators

5. After that, annotate the title parameter of the getFullName method with
the Required decorator and the method itself with the Validate decorator:

 @Validate

 public getFullName(@Required title: string, suffix: string) {

 //

6. Create an object of the Teacher class:

const teacher = new Teacher(1, "John Smith");

7. Try to call the getFullName method with an empty string as the
first parameter:

try {

 console.log(teacher.getFullName("", "Esq"));

} catch (e) {

 console.log(e.message);

}

8. Execute the code and verify that the error message is displayed instead:

The parameter at position 0 is required

In this exercise, you covered how to create parameter decorators and how to use
them to add metadata. You also orchestrated the usage of the same metadata into
another decorator, and build a basic validation system.

Application of Multiple Decorators on a Single Target
It is often necessary to apply more than one decorator on a single target. And as
decorators can (and do) change the code that actually gets executed, it's important to
have an understanding of how different decorators play together.

Basically, decorators are functions, and you're using them to compose your targets.
This means that, in essence, decorators will be applied and executed bottom-up, with
the decorator that's closest to the target going first and providing the result for the
second decorators, and so on. This is similar to functional composition; that is, when
we're trying to calculate f(g(x)), first the g function will be called, and then the f
function will be called.

Application of Multiple Decorators on a Single Target | 307

There is a small catch when using decorator factories, though. The composition
rule only applies to the decorators themselves – and decorator factories are not
decorators per se. They are functions that need to be executed in order to return a
decorator. This means that they are executed in source code order, that is, top-down.
Imagine that you have two decorator factories:

Example_MultipleDecorators.ts

1 function First () {
2 console.log("Generating first decorator")
3 return function (constructor: Function) {
4 console.log("Applying first decorator")
5 }
6 }

Link to the preceding example https://packt.link/jMhDj.

Second decorator factory:
7 function Second () {
8 console.log("Generating second decorator")
9 return function (constructor: Function) {
10 console.log("Applying second decorator")
11 }
12 }

Now imagine that they are applied on a single target:
13 @First()
14 @Second()
15 class Target {}

The generation process will generate the first decorator before the second, but in the
application process, the second will be applied, and then the first:

Generating first decorator

Generating second decorator

Applying second decorator

Applying first decorator

https://packt.link/jMhDj

308 | Decorators

Activity 7.02: Using Decorators to Apply Cross-Cutting Concerns

In this activity, we're going full circle to the basketball game example (Example_
Basketball.ts). You are tasked with adding all the necessary cross-cutting
concerns, such as authentication, performance metrics, auditing, and validation to the
Example_Basketball.ts file in a maintainable manner.

You can begin the activity with the code that you already have in the Example_
Basketball.ts. First, take stock of the elements that are already present in
the file:

• The interface that describes the team.

• The class for the game itself. You have a constructor that creates the team
objects given the team names. You also have a getScore function that
displayed the score and a simple updateScore method that updates the score
of the game, taking the scoring team and the score value as parameters.

Now you need to add the cross-cutting concerns as mentioned previously without
changing the code of the class itself, only by using decorators.

Earlier in Example_Basketball.ts, you had to completely subsume the business
logic of keeping score under the code that was needed to address everything else
(such as authorization, auditing, metrics, and so on). Now apply all the decorator
skills that are needed so that the application runs properly but still has a crisp and
clear codebase.

Note

The code file for this activity can also be downloaded from
https://packt.link/7KfCx.

The following steps should help you with the solution:

1. Create the code for the BasketBallGame class.

2. Create a class decorator factory called Authenticate that will take a
permission parameter and return a class decorator with constructor
wrapping. The class decorator should load the permissions metadata
property (array of strings), then check if the passed parameter is an element
of the array. If the passed parameter is not an element of the array, the class
decorator should throw an error, and if it's present, it should continue with the
class creation.

https://packt.link/7KfCx

Application of Multiple Decorators on a Single Target | 309

3. Define a metadata property of the BasketballGame class called
permissions with the value ["canUpdateScore"].

4. Apply the class decorator factory on the BasketballGame class with a
parameter value of canUpdateScore.

5. Create a method decorator called MeasureDuration that will use method
wrapping to start a timer before the method body is executed and stop it after
it's done. It should calculate the duration and push it to a metadata property
called durations for the method.

6. Apply the MeasureDuration method decorator on the
updateScore method.

7. Create a method decorator factory called Audit that will take a message
parameter and return a method decorator. The method decorator should use
method wrapping to get the arguments and the return value of the method.
After the successful execution of the original method, it should display the audit
log to the console.

8. Apply the Audit method decorator factory on the updateScore method, with
a parameter value of Updated score.

9. Create a parameter decorator called OneTwoThree that will add the decorated
parameter in the one-two-three metadata property.

10. Create a method decorator called Validate that will use method wrapping
to load all values for the one-two-three metadata property, and for all
marked parameters check their value. If the value is 1, 2, or 3, it should continue
the execution of the original method. If not, it should stop the execution with
an error.

11. Apply the OneTwoThree decorator to the byPoints parameter
of updateScore and apply the Validate decorator to the
updateScore method:

Create a game object, and update its score a few times. The console
should reflect the applications of all decoratorsas shown:
[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [3, true]

[AUDIT] and returned result:

[AUDIT] undefined

//…

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, true]

310 | Decorators

[AUDIT] and returned result:

[AUDIT] undefined

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, false]

[AUDIT] and returned result:

[AUDIT] undefined

7:8

Note

For ease of presentation, only a section of the expected output is shown
here. The solution to this activity can be found via this link.

In this activity, you are leveraging decoration to quickly and efficiently implement
complicated cross-cutting concerns. When you have successfully completed the
activity, you will have implemented multiple kinds of decorators, according to the
needs of the application, and thus will have widened the functionalities of your code
without sacrificing clarity and readability.

Summary
In this chapter, you looked at a technique called decorating that is natively supported
in TypeScript. The chapter first established the motivation for the use of decorators
and then looked at the multiple types of decorators in TypeScript (class, method,
accessor, property, and parameter decorators), along with examining the possibilities
of each. You learned how to swap or change the complete constructor of a class
with a class decorator, how to wrap a single method or property accessor with a
method decorator, and how to enrich the available metadata using property and
parameter decorators.

The chapter also discussed the differences between active and passive decorators,
which boil down to a difference between code and definition. You implemented
several common variants of each of the decorator types and demonstrated how
different decorator types can nicely complement each other. This chapter should
help you easily manage the usage and creation of decorators both from third-party
libraries such as Angular and from decorator factories created by yourself. In the next
chapter, we will begin our foray into dependency injection in TypeScript.

Overview

This chapter introduces you to Dependency Injection (DI) in TypeScript.
It demonstrates how to implement the DI design pattern. You will also see
some common use cases for the DI pattern, including ones from libraries
such as Angular and Nest.js. This chapter will teach you how to build a
simple Angular application that uses DI. You will also learn some basics of
InversifyJS and how to use it in your TypeScript applications. By the end of
this chapter, you will be able to build a calculator application that utilizes DI
using InversifyJS.

Dependency Injection in

TypeScript

8

314 | Dependency Injection in TypeScript

Introduction
A design pattern is a general, repeatable way to solve a commonly recurring problem
in software design. It is not just code that you can paste and use in your own code,
but a guideline to writing code. It is usually not tied to any specific language, so a
given pattern can be transformed from language to language, with its implementation
changed to match the desired language and environment.

Design patterns can usually be used in many different situations and help you solve
a lot of different problems. For example, if you want to make sure you only have one
active connection to a database, you may want to use the Singleton design pattern,
which basically ensures that only a single instance of something exists, or if you
want to write an ORM tool (an object-relational mapping tool, for abstracting away a
database) that allows the use of multiple databases, you may want to use the Adapter
design pattern, which allows the ORM tool to talk to multiple types of database
drivers using a "common language."

Using design patterns can speed up development, since they are battle-tested
through decades of prior usages, in a variety of problems. Furthermore, if working
in a team, it is easier to explain a solution to a given problem compared with
conventional methods. Design patterns serve as a sort of "common language."

Note that when beginning to learn the concepts of design patterns, it may be
difficult to wrap your head around them, and you may find it harder to solve
problems with them than without them. This is because it's not straightforward to
spot when a specific design pattern fits a given problem, especially when you don't
have experience using it, or don't understand either the pattern or the problem
completely. There are also some patterns that are commonly easier to understand
than others (for example, the Singleton pattern is easier to understand than the
Adapter pattern).

Furthermore, if you're just beginning to use a design pattern, its usefulness may not
be apparent until further down the project lifetime, where you might actually want to
add features that you may have not initially thought of or even just fix bugs. Lastly, it's
important to note that not every problem can be solved using a design pattern, and
using the wrong one may entail more issues than it solves. Also, not every problem
requires a design pattern – you can add as many patterns as you want to a "Hello
World" program, but their usefulness will be doubtful. So, it's important to take a step
back and see whether using it really fits the problem you're trying to solve.

The DI Design Pattern | 315

The DI Design Pattern
DI is a technique whereby one object supplies the dependencies of another object. A
dependency of an object is anything required in order to perform its operation in the
application. Before diving into an explanation of what DI is, let's try to understand the
fundamental element in the preceding definition with an example.

Let's say we have two classes:

Figure 8.1: A simple class dependency

As shown in the preceding diagram, Class A uses some properties/methods of Class
B. Thus, we can say that ClassB is a dependency of ClassA.

Let's look at a more real-world example (albeit simplified). Most websites,
whether social media websites, government websites for disbursal of services,
or e-commerce platforms, require a user to register in order to use the services
offered by the website. Imagine you are developing one such website. You require a
UserRegistrationService class to gather user details, save them in a database,
a file, or any other repository, and then send an email to the user informing them of a
successful registration.

Your website's method for handling the registration process would therefore
probably look something like this:

class UserRegistrationService {

 registerUser(email: string, password: string) {

 // TODO: process registration

 // TODO: send registration success email

 }

}

316 | Dependency Injection in TypeScript

This service has two primary responsibilities – saving the user's details to persistent
storage and sending them an email. For now, you are not concerned with whether
the details are stored in a database, SaaS, or a file. In the same vein, you are not
concerned if the registration email is automated or done manually. Thus, we just
want to get some UserRepository, and some EmailService, as shown here:

interface User {

 email: string;

 password: string;

}

interface UserRepository {

 save(user: User): Promise<User>;

}

interface EmailService {

 sendEmail(to: string, subject: string, body?: string): Promise<void>;

}

As mentioned, we don't care about their implementation, or even creating
them; we want someone else to do that, so our implementation of
UserRegistrationService could look something like this:

class UserRegistrationService {

 constructor(

 private userRepository: UserRepository,

 private emailService: EmailService

) {}

 async registerUser(email: string, password: string){

 await this.userRepository.save({

 email,

 password,

 });

 await this.emailService.
sendEmail(email, 'Welcome to my website!');
 }

}

Note that we don't know what the actual implementation behind UserRepository
or EmailService is; we just know their structure.

The DI Design Pattern | 317

Now, if we change how users are saved, for example, deciding to migrate from a
file to a MySQL database, or if we change our email provider from Mailchimp to
SendGrid, the UserRegistrationService class stays intact and should still
function as before as long as any implementation thereof conforms to the same
UserRepository and EmailService interfaces (for example, have the same
structure – same method signatures, with the same parameters, and so on) and
provide the same functionality as described previously.

For example, in the following code snippets, notice both the file-based and the
MySQL-based implementations, implement UserRepository, which is the only
thing that UserRegistrationService is aware of.

The file-based implementation is as follows:

// FileUserRepository.ts

import * as fs from 'fs';

class FileUserRepository implements UserRepository {

 save(user: User): Promise<User> {

 return new Promise((resolve, reject) => {

 fs.appendFile('users.txt', JSON.stringify(user), err => {

 if (err) return reject(err);

 resolve(user);

 });

 });

 }

}

The MySQL-based implementation is as follows:

// MySqlUserRepository.ts

import mysql from 'mysql';

class MySqlUserRepository implements UserRepository {

 connection = mysql.createConnection({

 // connection details

 });

 save(user: User): Promise<User> {

 return new Promise((resolve, reject) => {

 return this.connection.query(

318 | Dependency Injection in TypeScript

 `INSERT INTO users (email, password)

 VALUES (?, ?)`,

 [user.email, user.password],

 (err, data) => {

 if (err) return reject(err);

 resolve(data);

 }

);

 });

 }

}

To put it simply, DI allows us to separate the what from the how. The dependent class
only needs to know how to interact with a user repository – by calling a method called
save, with a single parameter of the User type), as well as with an email sender – by
calling a method called sendEmail that takes in two parameters; a to email address,
of the string type, a second parameter for the email's subject, also of the string
type, and an optional third parameter for the email's body (also of the string type).

Then, these services can handle the what should (actually) be done portion – saving
the user's details to a file, to a MySQL database, or an entirely different thing, and
then sending the email automatically using an SaaS service, queuing them for manual
sending later, or anything else.

Going back to the dependency chart, in this example, the dependencies are
as follows:

Figure 8.2: UserRegistrationService dependencies

The DI Design Pattern | 319

Another benefit of having used DI here is that it simplifies testing our
implementations separately from their dependencies. For example, when testing
the registerUser method of UserRegistrationService, we only want
to test the registerUser method; we don't care about how its dependencies
behave in production (we will test these separately). We can just mock them with any
implementation while testing to have them behave how we want. Remember that
the whole point of DI is that we don't care about what the dependencies do and how
they do it, as long as they conform to the agreed-upon interface – UserRepository
and EmailService in this case. Here is how we would test the registerUser
method in code:

interface User {

 email: string;

 password: string;

}

test('User registration', async () => {

 const mockUserRepository: UserRepository = {

 async save(user: User) {

 return user;

 },

 };

 const mockEmailService: EmailService = {

 async sendEmail(to: string, subject: string, body?: string) {},

 };

 const userRegistrationService = new UserRegistrationService(

 mockUserRepository,

 mockEmailService

);

 await userRegistrationService.registerUser(

 'example@domain.com',

 'super-secret-password'

);

320 | Dependency Injection in TypeScript

 expect(mockUserRepository.save).toHaveBeenCalled();

 expect(mockEmailService.sendEmail).toHaveBeenCalled();

 // ...

});

Even though the preceding examples only demonstrate classes, dependencies can be
of any type – classes, functions, plain objects, and even simple constants (depending
on the language and specific implementation).

For example, if UserRegistrationService were to require a constant value,
for example, a salt to hash the user's password with, it would be provided in the
constructor, too, as another argument, as shown here:

import * as bcrypt from 'bcrypt';

class UserRegistrationService {

 constructor(

 private userRepository: UserRepository,

 private emailService: EmailService,

 private passwordHashSalt: string

) {}

 async registerUser(email: string, password: string) {

 const hashedPassword = await bcrypt.hash(password, this.
passwordHashSalt);

 await this.userRepository.save({

 email,

 password: hashedPassword,

 });

 await this.emailService.sendEmail(email, 'Welcome to my website!');

 }

}

Note

The following sections will be using decorators, covered in Chapter 7.
Decorators. Please make sure that you have read and understood them
before continuing, as decorators are an essential part of how all DI libraries
covered next are built on.

The DI Design Pattern | 321

Another concept related to DI is Inversion of Control (IoC), a programming principle
in which the control flow is inverted, as the name suggests. While DI's concern is to
decouple dependencies via abstractions (such as our UserRepository abstraction
over the MySqlUserRepository implementation), in IoC, the concern is to let the
consumer decide what should be done by the component/library. For example, in
our implementation of UserRegistrationService above, we used IoC, since we
allow how the user's details are sent, as well as how an email is sent by the consumer,
to be specified. In the application's case, it could decide whether it wanted to use
FileUserRepository or MySqlUserRepository, and in the test code we
decided that both of them should do nothing. This was also decided at the consumer
(test code) level.

To summarize, DI concerns itself with letting a class know about abstractions over
implementations, while IoC's concerns revolve around letting the consumer decide
about the implementation(s) that should be used.

Some popular frameworks, both in the frontend as well as the backend, have
embraced DI as a core part of their framework – the most popular ones are Angular
in frontend development and Nest.js in the backend. DI allows applications built on
top of these frameworks to be very robust and flexible, especially in large applications
due to the nature of DI, which allows the creation of classes (and other dependencies)
to be separated from their usage.

DI in Angular

Another actual real-world example of DI can be found in the Angular framework – a
modern framework for building frontend applications using TypeScript. Angular has
its own implementation for a DI library. Furthermore, the Angular framework itself, as
well as apps built on it, heavily relies on this DI implementation.

Let's take a look at a simple Angular app and see how DI makes it straightforward to
build an easy-to-maintain, scalable application.

An Angular app is made up of several NgModule, each of which is usually a logical
part of an app – this can be a feature, a UI components library, or anything else. Each
NgModule can have two types of "things:"

1. Declarations (Component and Directive)

2. Providers (usually Service)

322 | Dependency Injection in TypeScript

Declarations are what constitute the UI of the app, things such as the
WelcomeMessageComponent class (shown in the following snippet), which takes
in name as an input (using the @Input decorator, which is kind of like passing in
parameters to a function or a constructor of a class, just with components), and
displays it in an HTML h1 tag (an HTML tag to display a main header):

import { Component, Input } from '@angular/core';

@Component({

 selector: 'welcome-message',

 template: `

 <h1>Welcome {{ name }}!</h1>

 `,

})

export class WelcomeMessageComponent {

 @Input() name: string;

}

The preceding code will yield the following output:

Figure 8.3: Displayed output of rendering WelcomeMessageComponent
with "John" passed in to the name input

Providers are usually services, which hold the main logic of the app and are usually
used for anything that's not specifically related to the UI.

For example, you could have a UsersService class that handles fetching a list of
users from a backend, as shown here:

import { Injectable } from '@angular/core';

import { Observable, of } from 'rxjs';

export interface User {

 name: string;

}

@Injectable()

export class UsersService {

The DI Design Pattern | 323

 getUsers(): Observable<User[]> {

 return of([

 { name: 'Alice' },

 { name: 'Bob' },

 { name: 'Charlie' }

]);

 }

}

The preceding code has a UsersService class that has a single method –
getUsers(), which returns a static array of User objects. Note that we wrap our
static array with of(), which takes a static value and wraps it in an Observable, so
we can later change the behavior of this method to asynchronously return data (for
example, from a remote endpoint, as we'll see next).

Note

An observable is an asynchronous stream of data, basically allowing data
to be passed between "publishers" and "subscribers." This data can be a
one-time operation, such as with an HTTP call, can have multiple emits (for
example, emit an increasing number from 1 through 10, in sequence, every
1 second), or can even be infinite (for example, emitting an event every time
the user clicks a specific button). It is part of the Observer pattern.

We would then use UsersService in our UsersList component, which displays
the users in a list, as shown here:

import { Component } from "@angular/core";

import { Observable } from "rxjs";

import { UsersService, User } from "./users.service";

@Component({

 selector: 'users-list',

 template: `

 <li *ngFor="let user of (users$ | async)">

 {{ user.name }}

324 | Dependency Injection in TypeScript

 `

})

export class UsersListComponent {

 readonly users$: Observable<User[]>;

 constructor(private usersService: UsersService) {

 this.users$ = usersService.getUsers();

 }

}

Here, we create a simple component, UsersListComponent, that displays a list of
users, which it gets from UsersService that's injected into it at creation time by the
Angular DI.

Once the service is injected, we call getUsers() and store the returned
Observable in a users$ member so we can later access it from the template,
which utilizes the async pipe to tell Angular to subscribe to the Observable and
update the template when its underlying value changes:

Figure 8.4: The output from running the app

We won't dive into Angular's template engine or change detection mechanisms
– those are two big topics in themselves – but you can refer to the Angular
documentation for more information on that. Instead, let's focus on what's going
on with regard to DI – notice that we asked for a UsersService object in the
UsersListComponents constructor; we didn't specify that we wanted to get a
specific instance of the service and so on, just that we want one. This is very powerful,
since this offloads the logic of how and where this service is instantiated to a
dedicated place (the NgModule) and opens up a lot of possibilities. We could test the
component more easily (by providing a fake UsersService), or even just replace
the UsersService implementation at runtime with another one.

The DI Design Pattern | 325

Angular providers can also require other providers; for example, we could have
a generic HTTP client service that knows how to make HTTP calls, and then inject
that into our UsersService, which can focus on more high-level details such
as the endpoint, which it needs to use in order to fetch the users. In fact, Angular
has such an HTTP service built in, called HttpClient. You can use it and fix the
mock implementation we had for the users with a real one, utilizing DI further as
shown here:

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs';

export interface User {

 name: string;

}

@Injectable()

export class UsersService {

 constructor(private httpClient: HttpClient) {}

 getUsers(): Observable<User[]> {

 return this.httpClient.get<User[]>('/api/users');

 }

}

Here, we ask for an HttpClient and use its get() method to make a GET request
to the /api/users endpoint in our site, which should return an array of User
objects – that is, objects with a property called name, with a string type.

This replaces the mock implementation we had earlier with a more real-world use
case by calling an external endpoint instead of returning a static list of users.

Again, notice that we just asked for an HttpClient interface again. We don't
care about how it's implemented (this could involve using XMLHttpRequest,
fetch, or even another underlying library), as long as it conforms to the
HttpClient interface.

326 | Dependency Injection in TypeScript

You may have noticed that the path that we request from HttpClient is a relative
one. This works if our backend is on the same domain as our frontend (for example,
https://example.com is our website and https://example.com/api/users would return the
users). However, if we want to move our backend to a different server, this will break
our website. In the next exercise, we will fix this, using Angular's DI mechanism and
by adding HttpInterceptor.

HttpInterceptor is an interface Angular provides that we can implement in order
to "hook," or even change network requests, either on their way out (the request), or
on their way back (the response), before any other consumer "sees" the response.
This will work wherever HttpClient is used in the application, without requiring
any more code modifications in other services that use HttpClient.

Note

The example discussed in this section is the basis of our next exercise.

Exercise 8.01: Adding HttpInterceptor to an Angular App

In this exercise, we'll add HttpInterceptor to our existing Angular application,
which we built in the preceding section, to allow our backend service to sit on a
different domain from our frontend application. This allows the two applications to
be separated completely, and very easily, without requiring any extra changes in the
rest of the application. Here are the steps to complete this exercise:

Note

Before you begin, make sure you run npm install in the exercise-
starter directory. The code files for this exercise can be found here:
https://packt.link/avWRA. This repository contains two folders, exercise-
starter and exercise-solution. The former contains the template
files that you can use to code along with this exercise, whereas the latter
contains the final code of this exercise for your reference.

1. Start by cloning the application we have written so far in this section. This can be
found at https://packt.link/JAgZ7.

https://example.com
https://example.com/api/users
https://packt.link/avWRA
https://packt.link/JAgZ7

The DI Design Pattern | 327

2. Create a class, ApiHttpInterceptor, in a new file, api-http.
interceptor.ts, and save the file in the exercise-starter/src/
app/interceptors/ folder. This file implements the HttpInterceptor
interface (imported from @angular/common/http). Be sure to mark it with
the @Injectable decorator so that Angular knows it's a service that can be
used in DI:

import { HttpEvent, HttpHandler, HttpInterceptor, HttpRequest } from
'@angular/common/http';
import { Injectable } from '@angular/core';

import { Observable } from 'rxjs';

@Injectable()

export class ApiHttpInterceptor implements HttpInterceptor {

 intercept(req: HttpRequest<any>, next: HttpHandler):
Observable<HttpEvent<any>> {
 throw new Error('Method not implemented.');

 }

}

Angular will call the intercept() method of ApiHttpInterceptor
when a request is made by any HttpClient. We get the request (req) and
HttpHandler (next), which we need to call when we're finished to let Angular
call any other HttpInterceptor in the chain.

3. Update the code to change the URL path:

import { HttpEvent, HttpHandler, HttpInterceptor, HttpRequest } from
"@angular/common/http";
import { Injectable } from "@angular/core";

import { Observable } from "rxjs";

@Injectable()

export class ApiHttpInterceptor implements HttpInterceptor {

 intercept(req: HttpRequest<any>, next: HttpHandler):
Observable<HttpEvent<any>> {
 if (!req.url.startsWith('/api/')) {

 return next.handle(req);

 }

 const relativeUrl = req.url.replace('/api/', '');

 const newRequest = req.clone({

328 | Dependency Injection in TypeScript

url: `https://jsonplaceholder.typicode.com/${relativeUrl}`

 });

 return next.handle(newRequest);

 }

}

The preceding code checks the URL path. For each request, if it's issued to a
relative path, starting with /api, the code changes it. It does so by looking at
the url property of HttpRequest. If the URL doesn't start with /api, you
don't need to do anything, just call next.handle() with the original request.
Otherwise, clone the original request with a new URL, and then call next.
handle() with the new request. This is the request that will actually be sent
out. We're using https://jsonplaceholder.typicode.com here, a free service that has
some predefined endpoints we can use to get data from, for testing purposes. In
an actual application, this would be your backend service's endpoint.

Lastly, we also need to register this interceptor in our AppModule so that it
can know what interceptors to inject into HttpClient. We do this by adding
ApiHttpInterceptor, which we created as a provider, and we tell Angular
to use it when looking for HTTP_INTERCEPTORS – this is the DI symbol that
Angular uses when it asks for all the interceptors it needs to use when making a
network request via the HttpClient service.

4. Open the app.module.ts file present in the exercise-starter/src/app
folder and update it with the code given here:

import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/
http';
import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { ApiHttpInterceptor } from './interceptors/api-http.
interceptor';
import { UsersListComponent } from './users-list.component';

import { UsersService } from './users.service';

import { WelcomeMessageComponent } from './welcome-message.
component';

@NgModule({

 imports: [BrowserModule, HttpClientModule],

 declarations: [AppComponent, WelcomeMessageComponent,
UsersListComponent],
 providers: [UsersService, { provide: HTTP_INTERCEPTORS, useClass:
ApiHttpInterceptor, multi: true }],

https://jsonplaceholder.typicode.com

The DI Design Pattern | 329

 bootstrap: [AppComponent],

})

export class AppModule { }

Since we want Angular to know about our interceptor, we add it to the HTTP_
INTERCEPTORS list (notice the bold line).

5. Run the new app by running npm start -- --open in the exercise-
starter directory. Your default browser should open up at http://
localhost:4200, and you should see a list of 10 users:

Figure 8.5: Output of the exercise

If you open the DevTools, you should see only one request to the users
endpoint, which is for https://jsonplaceholder.typicode.com/users (and not http://
localhost:4200/users):

Figure 8.6: Requests to the users endpoint

https://jsonplaceholder.typicode.com/users
http://localhost:4200/users
http://localhost:4200/users

330 | Dependency Injection in TypeScript

Notice that our UsersService didn't change at all here (and you can imagine the
benefits if we had dozens of services like it), but it is still working as expected from its
point of view.

All the code explained in this section and the exercise is just some examples of
how DI comes into play in Angular. However, there is much more. You can register
any value as a dependency to be injected (not just classes). You can control the
instantiation of the providers to be Singletons for the entire app, creating a new
instance for every NgModule or even for every Component instance. You can also
create them using some more complex logic via factories and more. You have just
scratched the surface of the very powerful DI library that Angular offers.

DI in Nest.js

Another framework to look at, also heavily inspired by Angular's architecture, is
Nest.js, which also heavily utilizes DI. Nest.js is a framework for building backend
applications using Node.js and TypeScript. Like Angular, Nest.js also has Modules
(equivalent to Angular's NgModule), and Providers. It also has Controller,
which handles incoming requests from clients and returns responses. These are
similar to Angular's components – both are what the consumers see. In Angular,
Component and Directive make up the UI, and in Nest.js, Controller makes
up the API to be consumed.

We won't dive into Nest.js' architecture, but here's a small example of a couple of
things that it leverages DI for:

import { Controller, Get, Param } from '@nestjs/common';

import { HelloService } from './hello.service';

@Controller('hello')

export class HelloController {

 constructor(private helloService: HelloService) {}

 @Get(':username')

 async getByUsername(@Param('username') username: string) {

 const message = await this.helloService.getHello(username);

 return { message };

 }

}

InversifyJS | 331

This is a simple "Hello World" controller, which, for a GET request to /hello/foo,
will return { message: "Hello foo" }. A controller is a container for endpoints
under a given prefix (so in this case, any request that starts with "/hello" will end
up going to this controller), and the @Get decorator around the getByUserName()
function tells Nest.js to call that method when a GET method is performed to the
given path (the paths of the individual methods/decorators are concatenated to those
of the controller) – "/hello/:username" in this case (anything starting with a : is
a placeholder for dynamic content. In this case, :username is the placeholder, and
we can get it by using the Param decorator, giving it the placeholder's name).

Notice that we get HelloService in the constructor, similar to Angular, via DI.
We also get the username param from the Param decorator, which also leverages
DI behind the scenes to get the current Request object. Lastly, the framework
is responsible for creating both HelloService and HelloController
for us; we don't need to do so ourselves. This, like in Angular, makes testing
HelloController easy, since you can just fake HelloService in your tests
with a mock implementation to either assert or modify the behavior of the controller.
This is a very simple example, but you can imagine HelloService replaced with
something like an authentication service, or an ORM tool for accessing the database.

In the next section, we'll cover InversifyJS – an IoC container for TypeScript (and
JavaScript) applications. Unlike Angular, which is only for the frontend, or Nest.js,
which is only for the backend, and which are both frameworks that dictate what your
application's architecture will be (at least at some level), InversifyJS is a generic library
that only does IoC and allows you to use DI in any application.

InversifyJS
InversifyJS is an implementation of an IoC container (inversion of control, which DI is
part of) for TypeScript (and JavaScript) applications. It is one of many implementations
and, as we've seen above, some frameworks come with their own DI solution, such as
Angular or Nest.js.

Note

Other alternatives to InversifyJS for general-purpose projects include
TypeDI and TSyringe, as well as typescript-ioc.

332 | Dependency Injection in TypeScript

The basic idea in InversifyJS, as in most other implementations for an IoC container,
is to have one place that defines all the concrete implementations of functionality,
and the rest of the app only depends on abstractions (for example, interfaces). This
greatly reduces coupling, and changing one implementation to another doesn't affect
the entire app or require lots of code changes.

Note

Coupling is about how tightly integrated/dependent two components
(usually classes) are, in the sense that if we change one of them, how likely
is the other to break without applicable changes to it too? The more tightly
integrated/connected two components are to one another, the more coupled
they are, and vice versa.

Ideally, changing one class should not require changes in others. In such
cases, the classes are considered decoupled (or loosely coupled).

To make InversifyJS work, we first need to add a polyfill for reflect-metadata, which
allows libraries to perform runtime reflection on objects to get their types in a more
powerful manner than the (currently) built-in typeof and instanceof operators.

In addition, since InverisfyJS works through decorators, you need to enable them by
setting experimentalDecorators and emitDecoratorMetadata to true in
your project's tsconfig.json file (note the bold lines):

{

 "compilerOptions": {

 "target": "es5",

 "lib": ["es6", "dom"],

 "types": ["reflect-metadata"],

 "module": "commonjs",

 "moduleResolution": "node",

 "experimentalDecorators": true,

 "emitDecoratorMetadata": true

 }

}

InversifyJS | 333

Note

There are additional requirements in order for InversifyJS to work, but all
modern browsers and Node.js versions should be able to use it without
further polyfills. For more details, visit the following link: https://github.com/
inversify/InversifyJS/blob/master/wiki/environment.md.

Just as with Angular and Nest.js' DI containers (NgModule and Module, respectively),
InversifyJS also needs to know how to resolve dependencies. This is generally
configured in a single place, usually in a file named inversify.config.ts in the
root of the project.

Note

This is the recommendation, but this file can be placed anywhere and
named anything, or split into multiple files; for example, for separating
the registration of classes of different features or domains, similar to
NgModules in Angular or Modules in Nest.js.

This file should be the only place in the application where there is coupling. The rest
of the app should only be dependent on abstractions.

These abstractions will usually be interfaces, but you can also depend on a specific
implementation, or a class (which can then be injected with a compatible subclass).

In addition, since interfaces in TypeScript only exist at compile time (see Chapter 7,
Inheritance and Interfaces), InversifyJS also requires a runtime abstraction token to
know what to resolve.

https://github.com/inversify/InversifyJS/blob/master/wiki/environment.md
https://github.com/inversify/InversifyJS/blob/master/wiki/environment.md

334 | Dependency Injection in TypeScript

Exercise 8.02: "Hello World" Using InversifyJS

In this exercise, we'll create a simple "hello world" application using InversifyJS. We'll
implement all the basic building blocks for a typical use case. Perform the following
steps to implement this exercise:

Note

The code files for this exercise can be found at https://packt.link/bXSTd.

1. First, create the abstraction for our logger using an interface in a new file
called logger.interface.ts in the src folder. This is what consumers will
reference later:

export interface Logger {

 log(message: string): void;

}

2. Next, create a concrete implementation for Logger. This implementation
is what the consumers of the code will get injected with when they require
Logger later on:

import { injectable } from "inversify";

import { Logger } from "./logger.interface";

@injectable()

export class ConsoleLogger implements Logger {

 log(message: string) {

 console.log(message);

 }

}

Note that ConsoleLogger implements Logger. This ensures that we write a
compatible implementation to what our consumers expect, and that they don't
break at runtime. In addition, the @injectable decorator is used to indicate to
InversifyJS that this implementation can be used as a dependency, and also that it
can be injected to other dependencies. This is how we make InversifyJS aware that
ConsoleLogger is something that it should be aware of.

https://packt.link/bXSTd

InversifyJS | 335

3. Create a new file called types.ts in the src folder. Then, define an injection
token that consumers can rely on later to ask InversifyJS to inject whatever
implementation is behind it at runtime:

export const TYPES = {

 Logger: Symbol.for("Logger"),

};

In this exercise, we'll stick with the recommended approach of creating a TYPES
object that resolves to a Symbol for each type (using an injection token is
required in most DI libraries in TypeScript, since interfaces don't exist at runtime,
so InversifyJS can't rely on them).

Note

If your target environment doesn't support symbols, you can instead use a
plain string. Just ensure that you don't have the same string registered for
multiple types.

4. Create a new file called ioc.config.ts in the src folder. Then, configure the
IoC container using the following code:

import { Container } from "inversify";

import { ConsoleLogger } from "./console-logger";

import { Logger } from "./logger.interface";

import { TYPES } from "./types";

export const container = new Container();

container.bind<Logger>(TYPES.Logger).to(ConsoleLogger);

This is what ties all three things (console-logger, logger.interface, and
types) together:

5. Create a consumer for the logger in a new file called main.ts in the src folder.
Notice that we use the @inject decorator to tell InversifyJS that we want the
Logger type:

import "reflect-metadata";

import { inject, injectable } from "inversify";

import { container } from "./ioc.config";

import { Logger } from "./logger.interface";

336 | Dependency Injection in TypeScript

import { TYPES } from "./types";

@injectable()

class Main {

 constructor(@inject(TYPES.Logger) private logger: Logger) {}

 run() {

 this.logger.log('Hello from InversifyJS!');

 }

}

// Run the app:

const main = container.resolve(Main);

main.run();

Note

The interface type annotation is just for TypeScript to be able to type check
the logger instance, but since interfaces only exist at compile time, this
is irrelevant for runtime, in which the argument passed to @inject is
what matters.

6. Now, run the app by executing npm start in the parent directory. You should
get the following output on your console:

Hello from InversifyJS!

Of course, for such a simple example, it would have been better to just have a single
line as follows:

console.log('Running');

However, in more complex applications, and even simple ones, DI can help, especially
if the application is expected to be actively maintained, with the addition of features
and the fixing of bugs happening all the time.

In the next activity, you will be tasked with creating a more complex app to
demonstrate how DI can help us develop applications while keeping best practices in
mind to make the app easy to maintain.

InversifyJS | 337

Activity 8.01: DI-Based Calculator

As a TypeScript developer, you are tasked with creating a calculator. Like any
calculator, you need your app to do the four basic math operations of addition (+),
subtraction (-), multiplication (*), and division (/).

Note

To keep things simple and focused solely on DI, you won't be adding
support for additional operators (for example, power (^)), or support the
order of operations, so your calculator will just walk through the expression
from left to right and perform the relevant operation. For example, the
expression (13+5*3-7 will result in 47 and not the mathematically
correct 21).

To complete this activity, you will have to implement InversifyJS and utilize IoC to
provide the math operators that the calculator can operate on.

You can start with the starter project and build it up by following the high-level steps
provided here. This activity will challenge the skills that you have developed not only
in this chapter but also in preceding ones. Hence, feel free to glance at the solution to
debug any issues you may have with your implementation or code.

Note

This activity is based on the last section, on InversifyJS, so be sure you
understand it fully before moving on to this one. You can find both the
activity starter and solution at https://packt.link/Pt3Vq. The activity-
starter folder contains the template files you can use to code along
with this activity. The activity-solution folder contains the files
representing the solution of this activity.

https://packt.link/Pt3Vq

338 | Dependency Injection in TypeScript

Perform the following steps to implement this activity:

1. You will have to start off by creating the basic building block of your calculator –
an operator defined via an interface.

2. Then, create operators for addition, subtraction, multiplication, and division.

For the preceding two steps, note that you need to create the requisite abstract
interface and injection token.

3. Implement a calculator class that uses these operators via InversifyJS. This
file represents your main app. You might need to map all expression parts
and parse them. For this, you can refer to the maths.ts file placed in
the src/utils folder, which creates and exports two such functions –
tryParseNumberString and tryParseOperatorSymbol.

4. Configure the IoC container (present in the src/ioc.config.ts file) so that
Calculator can receive AddOperator, SubtractOperator, and so on
when it asks for TYPES.AddOperator, for example. You can simplify the ioc.
config.ts file further by using barrels. The code for this can be found in the
operator/index.ts file. You can use the code in the aforementioned file to
configure and then simplify your IoC container.

5. Create the main.ts file that will kick-start your calculator.

After solving the preceding steps, the expected output should look like
the following:

result is 150

6. Bonus Steps:

As a bonus, let's say that you want some reporting on the operations performed
in the calculator. You can add logging (console- and file-based) easily without too
many changes:

7. For console-based logging, you need to add a logger via DI that the calculator
will write to on every expression evaluation. You can follow the given sequence
to do so. First, you need to define the Logger interface. Then, create the
console-based implementation of Logger. Next, create an injection token for
it and register it in our container. Then, use the logger in the code for the main
calculator app.

InversifyJS | 339

8. Now, let's say we want to replace our console-based logger with a file-based
one, which will persist across runs so that we can track the calculator's
evaluation history.

9. To do this, you first need to create a FileLogger class that implements
Logger in a new file in the src/logger folder. Then, you need to make a
single-line change in the ioc.config.ts file, which you used for console-
based logging.

For console-based logging, use this command:

container.bind<Logger>(TYPES.Logger).to(ConsoleLogger);

For file-based logging, use this command:

container.bind<Logger>(TYPES.Logger).to(FileLogger);

However, note that you will have to correctly import all Logger interfaces
across all files.

The output for the console-based logger is as follows:

[LOG] Calculated result of expression:13*10+20 is 150

The output for the file-based logger is as follows:

Figure 8.7: Final output of the file-based logger in activity-starter/src/tmp/calculator.log,
after changing the app to use it

Note

The solution to this activity can be found via this link.

The solution to this activity (activity-solution) also includes unit tests for
everything, so you can see how easy testing is when IoC is used as well as check that
your own implementation passes the tests. In addition, activity-solution also
includes a file that creates a ConfigurationService to supply FileLogger
with a dynamic loggerPath, with implementations for an in-memory one, or an
environment variables-based one.

340 | Dependency Injection in TypeScript

There is a lot more ground to cover on InversifyJS. However, this chapter serves
as a good start. We encourage you to take a look at the official documentation to
learn more about what it can offer and to see further examples, including factories,
container modules, and middlewares. However, these topics are beyond the scope of
this chapter.

Summary
This chapter equipped you first with the fundamentals of DI in TypeScript by
explaining how you can implement the DI design pattern and by taking you through a
number of use cases. You also learned how to build a basic Angular app using DI.

This chapter also introduced some basics of InversifyJS and explained how to use it
in your applications. You have seen how easy it is to add or change dependencies
without breaking the code for other consumers, along with the power of IoC and DI to
replace one implementation with another in a very simple manner, for all consumers.

Of course, there's a lot more to this topic in general than this chapter covered.
However, this chapter serves as a good start in getting up and running with DI in
TypeScript. In the next chapter, you will learn about generics in TypeScript.

Overview

This chapter introduces generics and conditional types. This chapter first
teaches you about what generics are, and some basic generics usage in
different contexts – interfaces, classes, functions, and so on. Next, you'll
learn about generic constraints, and how to make your code more type-safe
while using generics, to avoid errors at runtime. Lastly, you'll learn about
conditional types and how they make generics even more powerful by
introducing type-level logic at compile time.

By the end of this chapter, you will be able to apply generics to real-world
use cases.

Generics and Conditional

Types

9

344 | Generics and Conditional Types

Introduction
In the previous chapter, we saw how we can use dependency injection in TypeScript.
In this chapter, we'll cover two of the more advanced features that TypeScript's type
system offers, useful mostly in advanced applications or when building libraries –
generics and conditional types.

TypeScript includes a very strong type system that covers a lot of use cases and
advanced types. In earlier chapters, we saw some of the more basic ways in which
you can utilize the type system while building applications.

Generics are one of the building blocks of many languages, such as Java, C#, Rust,
and of course TypeScript, and they aim to allow developers to write dynamic and
reuseable generic pieces of code with types that are unknown when writing the code
but will be specified later, when using these generic pieces of code. In other words,
generics are a sort of "placeholder" when the concrete type isn't known at the time of
creating an application.

For example, if you want to write a generic List data structure, the implementation
is the same for whatever type of item it may store, but the actual type of item
is unknown when writing the List class. We can then use generics as a sort of a
"placeholder" type when writing it, and the user of the List class will specify it when
they know the concrete type it'll use, thereby filling in this "placeholder."

Conditional types allow us to bring logic into TypeScript's type system, which will be
checked at compile time. This means that our types can be safer, and we can make
code stricter, and move some of our logic from runtime to compile time, which means
that less code needs to run on the server or in the user's browser. Additionally,
conditional types allow us to write more complex types, with more complex relations
between them.

For example, if we want to remove some options from a string literal union, we can
use the Extract type to only take some of them:

type Only FooAndBar = Extract<"foo" | "bar" | "baz", "foo" | "bar">; //
"foo" | "bar"

While not restricted to usage with generic types, conditional types are usually used
in these cases, since you want to write some logic on a type unknown and ahead of
time, because otherwise, you could write it explicitly yourself.

In this chapter, we'll explore both generics and conditional types and see how they
can make your code more robust, resilient to changes, and offer a better developer
experience when used externally.

Generics | 345

Generics
As mentioned, generics help us write code that has types that are unknown when
writing it but will be known later on, when someone uses the code. They allow us
to put "placeholders" where concrete types would've been used otherwise, and for
these placeholders to be filled in later, by the user of our code. Generics allow us
to write a code once, and use it for multiple types, without losing type-safety along
the way, or even increasing the type-safety in comparison to what we can achieve
without it.

Let's see how generics help us with typing things more correctly, starting with a very
basic function—identity:

// identity.ts

function identity(x: number): number {

 return x;

}

The identity function takes in a number, x, and just returns x. Now, let's say we
want the same functionality for strings too:

// identityString.ts

function identityString(x: string) {

 return x;

}

Since type information is just for compile time, the two functions are the exact same
in the compiled JavaScript output:

// identity.js

function identity(x) {

 return x;

}

// identityString.js

function identityString(x) {

 return x;

}

346 | Generics and Conditional Types

Since the output JavaScript code is the same and given that TypeScript only adds
types on top of existing JavaScript, there's a way to type this existing identity
function such that it'll support both use cases. We can type identity in multiple
ways – the most simple way is to type x as any. However, this means we lose type-
safety inside the function, not to mention in the return type:

function identity(x: any): any {

 return x;

}

const result = identity('foo');

result.toFixed();

This is probably not what we want. Since result is of type any, TypeScript cannot
know that result.toFixed() in the preceding code will throw an error at runtime
(since strings don't have a toFixed() method):

Figure 9.1: Running this code results in a TypeError at runtime

Instead, we can leverage generics – we'll type x as a generic type T, and return the
same type from the function. Consider the following code:

function identity<T>(x: T): T {

 return x;

}

In TypeScript, generics are written using angled brackets, and a placeholder
type name between them. In the preceding code, T is generic and serves as a
"placeholder." Now if we update the code with the following details, we will get a
compile-time error as shown here (red underline):

Generics | 347

Figure 9.2: Compile-time error due to generics being used

Note

The placeholder type name can be anything, and its name is only useful for
the developer using the code – so try to give generic types useful names
that have meaning in the context they're used in.

Note that we only have a single function (identity) implementation that can be used
with both strings and numbers. TypeScript also knows the return type automatically
and can provide useful errors at compile time. Moreover, we can pass any other type
to the identity function, without the need to modify it at all.

Note

We didn't even have to tell TypeScript what the type of the generic is
when calling identity(). TypeScript can usually infer the type of the
generic(s) itself from the arguments.

Usually, having to manually specify the type of the generic when calling a
function is a code smell (a sign that the underlying code might contain a
bigger problem), when it can be inferred from the arguments (though there
are exceptions to this).

348 | Generics and Conditional Types

Generics come in all sorts of forms—from functions like we just saw, to interfaces,
types, and classes. They all behave the same, just in their own scope—so function
generics are only applicable for that function, while class generics are for that class's
instance, and can also be used inside its methods/properties. In the next sections,
we'll explore each of these types of generics.

Generic Interfaces

Generic interfaces are interfaces that have some additional type, not previously
known to the author of the interface, "attached" to them. This additional type gives
"context" to the interface and allows better type-safety when using it.

In fact, if you've used TypeScript in the past, you've probably already interacted with
generics, maybe without even realizing it. They are at play everywhere—just take a
look at this basic line of code:

const arr = [1, 2, 3];

If you hover over arr, you'll see it's of type number[]:

Figure 9.3: The type of arr is inferred to be number[]

number[] is just a shorter syntax for Array<number> —generics at play again.

In arrays, generics are used for the type of elements that the array holds. Without
generics, Array would have to be typed with any all over the place or have a
separate interface for every type possible (including non-built-in ones, so that's
out of the question).

Generics | 349

Let's take a look at the Array<T> interface definition:

Figure 9.4: Some of the Array<T> interface, where generics are heavily used

350 | Generics and Conditional Types

As you can see, the pop, push, and concat methods all use the T generic type
to know what they return, or what they can accept as arguments. This is why the
following code doesn't compile:

Figure 9.5: An error when trying to push an incompatible type to an array with
a specific generic type

This is also how TypeScript can infer the type of the value in the callback for map,
filter, and forEach:

Figure 9.6: Type inference when using the map method of Array

Generics | 351

Generic Types

Generics can be used on plain types, for example, to create a Dictionary<V> type,
and also to describe a map between strings of any values of type V, which is unknown
ahead of time, and therefore generic:

type Dictionary<V> = Record<string, V>;

There are more use cases for generic types, but mostly you'll either be using them
together with generic constraints (explained later in this chapter) or describing them
with interfaces (though mostly anything that an interface can do, a type can
as well).

Generic Classes

Generics are also very useful for classes. As we've seen earlier in the chapter,
the built-in Array class uses generics. These generics are specified at the class's
definition and apply to that instance of the class. Properties and methods of the class
can then utilize that generic type for their own definitions.

For example, let's create a simple Box<T> class that holds a value of any type T and
allows retrieving it later:

class Box<T> {

 private _value: T;

 constructor(value: T) {

 this._value = value

 }

 get value(): T {

 return this.value;

 }

}

The _value property, the constructor, and the value getter use the T generic
type from the class's definition for their own types. This type could also be used for
other methods in this class if there were any.

352 | Generics and Conditional Types

Additionally, methods of the class can add their own generics, which will only apply
to that method's scope – for example, if we wanted to add a map method to the Box
class, we could type it like so:

class Box<T> {

 ...

 map<U>(mapper: (value: T) => U): U {

 return mapper(this.value)

 }

}

The U generic type can be used inside the map method declaration, as well as within
its implementation, but it cannot be used in other class members (like the value
getter from earlier), unlike T – which is scoped to the entire class.

Exercise 9.01: Generic Set class
In this exercise, we'll create a Set<T> class that implements that Set data
structure – a data structure that can hold items, without a specific order, and
without duplications, using generics.

Follow these steps to implement this exercise:

Note

The code file for this exercise can be found here: https://packt.link/R336a.

1. Start by creating a Set class that has a generic T type. This type will be the type
of the items in the set:

class Set<T> {

}

2. Next, let's add a constructor that takes some optional initial values. These will
need to be an array with items of type T, to match our Set items:

class Set<T> {

 private items: T[];

 constructor(initialItems: T[] = []) {

https://packt.link/R336a

Exercise 9.01: Generic Set class | 353

 this.items = initialItems;

 }

}

We use default parameters to initialize initialItems with an empty array if
we haven't been supplied with one – this makes this parameter optional, while
still making it convenient to work with inside our constructor implementation.

3. Let's add the size getter, which returns the size of the set. This will simply be
our items length:

class Set<T> {

 private items: T[];

 //...

 get size(): number {

 return this.items.length;

 }

}

4. Next, let's add a has method, which checks whether a given item is already in
the set:

class Set<T> {

 private items: T[];

 //...

 has(item: T): boolean {

 return this.items.includes(item);

 }

}

Notice that we use the T type in the has definition – we can use it since it's in the
scope of the class, where T was declared.

5. Lastly, we also need a way to add and remove items from our set – let's
add those:

class Set<T> {

 ...

 add(item: T): void {

354 | Generics and Conditional Types

 if (!this.has(item)) {

 this.items.push(item);

 }

 }

 remove(item: T): void {

 const itemIndex = this.items.indexOf(item);

 if (itemIndex >= 0) {

 this.items.splice(itemIndex, 1);

 }

 }

}

For the add method, we first check whether the given item already exists, and if
not, add it.

For the remove method, we look for the index of the given item. If it exists, we
remove it from the array.

6. Now, write the following two lines of code:

const set = new Set <number>([1,2,3]);

set.add(1) // works – since 1 is a number

set.add('hello') //Error – since 'hello' is not a number

On your IDE, you will see the following:

Figure 9.7: Type-safety in the Set class because of generics

We can see how the Set class can be used, and how it keeps itself type-safe,
not allowing items of multiple types to be mixed together in the same class, for
instance, in the following step 7.

Exercise 9.01: Generic Set class | 355

7. Lastly, if you go back to the Set class implementation, you'll notice that the type
of items within the class is T[], so if we tried to add an item that TypeScript
doesn't know is of type T to the items array, we'd get an error:

Figure 9.8: Type-safety in the Set class because of generics

This is expected, since T can be of any type, and not just a string – as we saw in
the preceding example where we created a Set<number> – a set that can only
hold numbers.

Generic Functions

We've already briefly seen generic functions at the beginning of this chapter with
the identity<T>() function. But let's look at a more real-world, more useful use
case—say you want to write a wrapper around fetch() for fetching JSON data, such
that users won't have to call .json() on the response. Consider the following code:

interface FetchResponse {

 status: number;

 headers: Headers;

 data: any;

}

async function fetchJson(url: string): Promise<FetchResponse> {

 const response = await fetch(url);

 return {

 headers: response.headers,

 status: response.status,

 data: await response.json(),

 };

}

356 | Generics and Conditional Types

Here, we use the browser's fetch function to make a GET call to the given url and
then return an object with the main parts of the response – the headers, the status
code (status), and the body, after parsing it as JSON (data).

Note

fetch() is not part of ECMAScript and is therefore not part of the
language. It's available natively in all modern browsers and can be used
in Node.js via packages such as node-fetch, isomorphic-fetch,
and others.

The json() method returns Promise<any>. This means that the following code
may throw at runtime, if the returned object doesn't have a title property, or it isn't
of type string:

 const { data } = await fetchJson('https://jsonplaceholder.typicode.
com/todos/1');
 console.log(data.title.toUpperCase()); // does data have a title
property? What type is it?..

It would be useful if a consumer calling the fetchJson function could know
what the type of data is. For that, we could add a generic type to the fetchJson
function, which we'd also need to indicate in the return type somehow – that's where
interface and type generics come in again. Consider the following code of
fetchJson.ts:

// fetchJson.ts

interface FetchResponse<T> {

 status: number;

 headers: Headers;

 data: T;

}

async function fetchJson<T>(url: string): Promise<FetchResponse<T>> {

 const response = await fetch(url);

 return {

 headers: response.headers,

Exercise 9.01: Generic Set class | 357

 status: response.status,

 data: await response.json(),

 };

}

This is very similar to the first declaration of fetchJson seen previously. Actually,
the resulting JavaScript is exactly the same. However, this declaration now uses
generics to allow the users of the function to specify the return type expected from
making the GET call.

Now consider the code of usage.ts:

// usage.ts

(async () => {

 interface Todo {

 userId: number;

 id: number;

 title: string;

 completed: boolean;

 }

 const { data } = await fetchJson<Todo>('https://jsonplaceholder.
typicode.com/todos/1');

 console.log(data.title); // ✅ title is of type 'string'

 console.log(data.doesntExist); // ❌ 'doesntExist' doesn't compile

})();

Here, we allow the user to pass in a T generic type to fetchJson<T>(), which
the function declaration later passes to the FetchResponse<T> interface, tying
things together.

Note

Just like interfaces, generics only exist at compile time. So, anything you
write there is as safe as you make the compiler understand it to be. For
example, if you were to type Todo differently, or pass a different type,
then the actual result – there is no guard built into TypeScript to verify it
at runtime (without user/library code – see user type guard in Chapter 5,
Inheritance and Interfaces).

358 | Generics and Conditional Types

Note that in the preceding example, the T generic is a convenience generic—it's only
there for the user's convenience—it's only used once, and doesn't offer any more
type-safety than a simple type assertion would:

const response = await fetchJson('https://jsonplaceholder.typicode.com/
todos/1');
const todo = response.data as Todo;

Note that generics, just like variables, have scopes, and you can define generics at
multiple levels, letting the user provide them as needed. For example, notice how we
use the T generic type that's declared in the map function, in our inner function (in
line 2 in the following snippet):

function map<T, U>(fn: (item: T) => U) {

 return (items: T[]) => {

 return items.map(fn);

 };

}

const multiplier = map((x: number) => x * 2);

const multiplied = multiplier([1, 2, 3]); // returns: [2, 4, 6]

This applies to things such as interfaces and classes too. In the Array<T> interface,
the map function takes an additional generic to be used as the output type, as can be
seen in the Array<T> interface declaration in TypeScript:

interface Array<T> {

 // ...

 map<U>(callbackfn: (value: T, index: number, array: T[]) => U,
thisArg?: any): U[];
 // ...

}

Consider the following screenshot:

Figure 9.9: The map method of Array<T> has a return type inferred based
on the type returned from callbackfn

Exercise 9.01: Generic Set class | 359

Once we add the code shown above, again, we don't need to explicitly tell TypeScript
that U is string – it can infer it from the return type of the callback function (though
we could explicitly pass it if we wanted to). The map method of Array<T> has a
return type inferred based on the type returned from callbackfn. It's inferred to
string[] in this case.

Generic Constraints

Sometimes you want to define a generic to be constrained to some subset of types.
At the beginning of this chapter, we looked at the identity function – there it was
easy and made sense to support any type. But what about typing a getLength
function – which only makes sense for arrays and strings. It doesn't make sense to
accept just any type – what would the output of getLength(true) be? In order to
constrain the type of values our function can accept, we can use generic constraints.
Consider the following code:

function getLength<T extends any[] | string>(x: T): number {

 return x.length;

}

This definition constrains the given T type to be a subtype of either any[] (an array
of anything – string[], number[], or any Foo[] would all be valid types) or a
string. If we pass an invalid type, we get a compilation error as you can see here:

Figure 9.10: Compile-time errors are given for invalid types when passed
to the getLength function

There are many use cases for generic constraints, and more often than not you'll
want to set some of these in place when using generics, since when writing the
code, you probably assume some underlying type for it. Additionally, putting generic
constraints lets TypeScript narrow the possible type of the generic type, and gives you
better suggestions and type-checking.

360 | Generics and Conditional Types

For example, in a more real-world scenario, we might have some functions that
return us plain dates while others return an epoch. We want to always work with
dates, so we can create a function, toDate, that accepts these types and normalizes
a Date function from them:

function toDate<T extends Date | number>(value: T) {

 if (value instanceof Date) {

 return value;

 }

 return new Date(value);

}

Here, we first check if the given value is a date. If so, we can just return it. Otherwise,
we create a new Date function with the value and return that.

Generic constraints are especially powerful for creating higher-order functions,
where typing the incoming function can be very hard, and keeping type-safety is a big
benefit for code maintainability. In the next exercise, we'll see more uses for generic
constraints in a real-world application and cases where it brings better typing to
our code.

Note

Higher-order functions are functions that either take in another function as
an argument or return a function. We'll explore these more in Chapter 12,
Guide to Promises in TypeScript.

Exercise 9.02: The Generic memoize Function

In this exercise, we'll create a memoize function that, using generics, will be
completely type-safe—it takes in a function and returns a function of the same type.

Note

Memoization is a way to optimize performance, by reducing the number of
times something is done. A memorization function is a higher-order function
that caches the results of the inner function passed to it.

Exercise 9.01: Generic Set class | 361

Follow these steps to implement this exercise:

Note

The code files for this exercise can be found here: https://packt.link/zUx6H.

1. Start by implementing the naïve function definition. We'll add types later:

function memoize(fn: Function, keyGetter?: (args: any[]) => string) {

 // TODO: we'll implement the function in the next steps

}

memoize takes in a function, fn, to memoize, as well as an optional
keyGetter to serialize the arguments to a key, used for later lookups.

2. Next, let's implement the function itself:

function memoize(fn: Function, keyGetter?: (args: any[]) => string) {

 const cache: Record<string, any> = {};

 return (...args: any[]) => {

 const key = (keyGetter || JSON.stringify)(args);

 if (!(key in cache)) {

 cache[key] = fn(...args);

 }

 return cache[key];

 };

}

In the memoize function, we create an empty cache dictionary – the keys
are the serialized arguments, and the values are the results of running the fn
function on those arguments.

We then return a function that, given some arguments, args will check to see if
the results for running fn with them have already been cached. If they haven't,
we run fn with these arguments and cache the result. Lastly, we return the value
we have stored in the cache, which is either a past calculation or the one we just
ran and cached.

https://packt.link/zUx6H

362 | Generics and Conditional Types

3. To test this out, we'll write an "expensive" function with one that loops for 10
seconds before adding two numbers:

function expensiveCalculation(a: number, b: number) {

 const timeout = 10000;

 const start = Date.now();

 while (Date.now() <= start + timeout);

 return a + b;

}

Note

Since memoization is meant to reduce the number of calls, it is usually
effective in functions that take a long time to run – to illustrate this, we made
expensiveCalculation, a function that takes a needlessly long time
to run (10 seconds).

4. Next's let's memoize it:

const memoizedExpensiveCalculation = memoize(expensiveCalculation);

Notice that the memoized version is not type-safe. It does verify that we give it
a function, but the returned value is a very loosely typed function, which may
fail at runtime or have unexpected behavior if not typed correctly – you can pass
in any number of arguments to it, with any type, and it will compile fine, even
though at runtime the function expects to only be called with two arguments,
both of which should be of type number.

Here we are memoizing with the following:

expensiveCalculation("not-a-number", 1);

memoizedExpensiveCalculation("not-a-number", 1);

5. On your IDE, hover over the preceding two line of code. You will notice
the following:

Figure 9.11: Message on the IDE

Exercise 9.01: Generic Set class | 363

As can be seen in the preceding screenshot, the memoized version of
expensiveCalculation is not type-safe – it allows passing in a string as the
first parameter, when it should only accept a number.

6. Go back to the top of the file and then add generic constraints and make
our memoize function more type-safe. First, we need to define a couple of
helper types:

type AnyFunction = (...args: any[]) => any;

type KeyGetter<Fn extends AnyFunction> = (...args: Parameters<Fn>) =>
string;

The first type, AnyFunction, describes a function that takes any number of
arguments and returns anything. The second type, KeyGetter, describes a
function that takes in the parameters of the generically constrained function Fn
and returns a string. Notice that we constrain Fn to be of type AnyFunction.
This ensures that we get a function, and allows us to use the built-in
Parameters<T> type, which takes in a type of a function and returns the
parameters it takes.

7. Next, make our memoize function definition more type-safe using the two types
we just defined – typing both arguments in a better way:

function memoize<Fn extends AnyFunction>(fn: Fn, keyGetter?:
KeyGetter<Fn>) {

Again, we constrain Fn to be of type AnyFunction to ensure we get a function,
as we did before, as well as to be able to use the specific function type later, for
our return type.

Now we have a more type-safe function, since keyGetter is now type-safe but
it still doesn't return a typed function back.

8. Let's fix that by also making the implementation more type-safe:

function memoize<Fn extends AnyFunction>(fn: Fn, keyGetter?:
KeyGetter<Fn>) {
 const cache: Record<string, ReturnType<Fn>> = {};

 return (...args: Parameters<Fn>) => {

 const key = (keyGetter || JSON.stringify)(args);

 if (!(key in cache)) {

 cache[key] = fn(...args);

364 | Generics and Conditional Types

 }

 return cache[key];

 };

}

We use ReturnType<Fn> for the values of our cache instead of any.
ReturnType<T> is another built-in type that types in a type of a function and
returns the return type of that function. We also use the Parameters<T> type
again here, to describe the function we're returning from memoize.

9. Hover your mouse over memoizedExpensiveCalculation('not-a-
number'). Now, our memoize implementation is completely type-safe, and the
code that didn't cause a compile-time error in step 4 now runs correctly:

Figure 9.12: The type of memoizedExpensiveCalculation is the same as the original
expensiveCalculation function

This exercise demonstrates how generics can be used in functions and types,
and how they integrate with one another. Using generics here is what allows the
memoize function to be completely type-safe, so there is less chance of our code
hitting errors during runtime.

Generic Defaults

Sometimes, you want to allow for generics, but not require them – you want to give
some sensible defaults, but allow overriding them as needed. For example, consider
the following definition of an Identifiable interface:

interface Identifiable<Id extends string | number = number> {

 id: Id;

}

This can be used by other interfaces like so:

interface Person extends Identifiable<number> {

 name: string;

 age: number;

}

interface Car extends Identifiable<string> {

 make: string;

Exercise 9.01: Generic Set class | 365

}

declare const p: Person; // typeof p.id === 'number'

declare const c: Car; // typeof c.id === 'string';

The current implementation requires every implementer of the Identifiable
interface to specify the type of Id it has. But maybe we want to give some default,
so you only have to specify it if you don't want that default type. Consider the
following code:

interface Identifiable<Id extends string | number = number> {

 id: Id;

}

Notice the bolded code change. We give the Id generic type a default type of
number, which simplifies the code for the implementors of this interface:

interface Person extends Identifiable {

 name: string;

 age: number;

}

interface Car extends Identifiable<string> {

 make: string;

}

Note that now Person doesn't have to specify the type of Id, and the code is
equivalent to before.

Another, more real-world, scenario is with React components—each React
component may have props and may have state, both of which you can specify when
declaring a component (by extending React's Component type), but it doesn't have to
have either, so there's a default {} given to the generic type of both:

Figure 9.13: Partial snippet from the @types/react package

This makes React components have no props and no state by default, but these can
be specified if they need either of them.

366 | Generics and Conditional Types

Conditional Types
Conditional types were introduced in TypeScript 2.8 and allow complex type
expressions, some of which drive some of the built-in types we saw earlier. These
are really powerful, since they allow us to write logic inside our types. The syntax for
this is T extends U ? X : Y. This is very similar to the regular JavaScript ternary
operator, which allows for inline conditions, the only difference in the syntax is that
you have to use the extends keyword and that this check is done at compile time
and not runtime.

This allows us to write a NonNullable<T> type:

type NonNullable<T> = T extends null | undefined ? never : T;

This is already built into the language, but it's driven by the same code you could
write in your app.

This means that you can check whether a type is nullable at compile time and change
the type signature or inference based on that. An example use case for this would be
an isNonNullable function. Consider the following code:

function isNonNullable<T>(x: T): x is NonNullable<T> {

 return x !== null && x !== undefined;

}

The preceding code together with the filter method of Array can allow you to
filter for relevant items. For example, consider the following definition of an array
with items of mixed types:

Figure 9.14: The type of arr is an array, where each element is either number,
null, or undefined

When we call arr.filter(isNonNullable), we can get a properly typed array:

Figure 9.15: The type of nonNullalbeArr is inferred to be number[]

Conditional Types | 367

Lastly, another addition to TypeScript in 2.8 was the infer keyword, which
allows you to get help from the compiler in inferring the type of something, from
another type.

Here's a simple example:

type ArrayItem<T extends any[]> = T extends Array<infer U> ? U : never;

Here, we want to get the inner type of an array (for example, for an array of type
Person[], you want to get Person). So we check if the passed generic type T
extends Array<infer U> the infer keyword suggests to the compiler that the
compiler should try to understand what the type is, and assign that to U, which we
then use as the return value from this conditional type.

Note

This specific example type was also possible in previous versions via type
ArrayItem<T extends any[]> = T[number].

Another very useful example that was not previously possible outside of arrays was
to "unbox" a type. For example, given the Promise<Foo> type, we want to get the
Foo type back. This is now possible with the infer keyword.

Similarly to the last example, where we extracted the array inner type, we can use the
same technique for any other generic type that "boxes" another type:

type PromiseValueType<T> = T extends Promise<any> ? T : never;

This will yield the following type information on the IDE:

Figure 9.16: The type of UnpromisedPerson is Person

368 | Generics and Conditional Types

In the next activity, we'll take a look at a more real-world use case for conditional
types, as well as usage of the infer keyword.

Activity 9.01: Creating a DeepPartial<T> Type

In this activity, we'll be using concepts learned in this chapter—generics, conditional
types, and the infer keyword—to create a DeepPartial<T> type. This type is like
the built-in Partial<T> type. But we will work recursively and make every property
in the object optional, recursively.

This will allow you to correctly type variables and so on so that all of their properties,
at any level, can be optional. For example, a REST server will serve resources, and
allow modifying them using a PATCH request, which should get a partial structure of
the original resource, to modify.

Note

The code file for this activity can be found here: https://packt.link/YQUex.

To create this type, we'll need to deal with a few cases:

1. Primitives – strings, numbers, and other primitives, in addition to dates, are
not something we can apply Partial to. So DeepPartial<string>
=== string.

2. For constructs like objects, Array, Set, and Map, we want to "reach into" the
construct and apply DeepPartial to their values.

3. For everything else, we want to just apply Partial.

Perform the following steps to implement this activity:

1. Create a PartialPrimitive type.

2. Define a basic DeepPartial<T> type that can handle primitives and objects at
the top level.

3. Add support for arrays by defining a DeepPartialArray<T> type and add
handling for it in our DeepPartial<T> type.

4. Add support for sets by defining a DeepPartialSet<T> type and add
handling for it in our DeepPartial<T> type.

https://packt.link/YQUex

Summary | 369

5. Add support for maps by defining a DeepPartialMap<T> type and add
handling for it in our DeepPartial<T> type.

6. Add support for plain objects, by applying the ? property modifier on each of
their properties, and passing their values wrapped in DeepReadonly.

Note

The solution to this activity can be found via this link.

Summary
This chapter got you started with the basics of generics and conditional types. We
learned about generics in a lot of different use cases, why they are useful, as well as
some extensions to their basic usage – generic defaults and conditional types. We
performed a couple of exercises to show how you can include generics in your code
to make it type-safe and avoid errors at runtime.

Generics are useful in all kinds of applications, both frontend and backend, and are
used everywhere, but especially so in libraries, where a lot of the time, you want to
expose an API that leverages the applications' types, which you might not know ahead
of time.

In the next chapter, you'll learn about asynchronous development, some of which you
encountered briefly in this chapter when typing external APIs.

Overview

In this chapter, you'll investigate how a web page actually works within the
browser, with a special focus on how, when, and why the browser executes
the JavaScript code we provide. You'll dive deep into the intricacies of the
event loop and see how we can manage it. Lastly, you'll learn about the
tools that TypeScript offers you. By the end of this chapter, you will be able
to better manage the asynchronous nature of the execution.

Event Loop and Asynchronous

Behavior

10

shantanuz
Text Box
Chapter 1:

372 | Event Loop and Asynchronous Behavior

Introduction
In the previous chapter, you learned the fundamentals of generics and conditional
types. This chapter introduces you to event loops and asynchronous behavior.
However, before you proceed with learning these topics, let's have a look at a
hypothetical scenario to really understand how synchronous and asynchronous
executions work.

Imagine a small bank that has a single teller. His name is Tom, and he's serving
clients all day. Since it's a small bank and there are few clients, there's no queue. So,
when a client comes in, they get Tom's undivided attention. The client provides all
the necessary paperwork, and Tom processes it. If the process needs some kind of
outside input, such as from a credit bureau or the bank's back-office department,
Tom submits the request, and he and the client wait for the response together.
They might chat a bit, and when the response comes, Tom resumes his work. If a
document needs to be printed, Tom sends it to the printer that's right on his desk,
and they wait and chat. When the printing is done, Tom resumes his work. Once the
work is completed, the bank has another satisfied client, and Tom continues with his
day. If somebody comes while Tom is serving a client (which happens seldom), they
wait until Tom is completely done with the previous client, and only then do they
begin their process. Even if Tom is waiting on an external response, the other client
will have to wait their turn, while Tom idly chats with the current client.

Tom effectively works synchronously and sequentially. There are lots of benefits
of this approach to working, namely, Tom (and his bosses) can always tell whether
he is serving a client or not, he always knows who his current client is, and he can
completely forget all the data about the client as soon as the client leaves, knowing
that they have been serviced completely. There are no issues with mixing up
documents from different clients. Any problems are easy to diagnose and easy to fix.
And since the queue never gets crowded, this setup works to everyone's satisfaction.

So far, so good. But what happens when the bank suddenly gets more clients? As
more and more clients arrive, we get a long queue, and everyone is waiting, while
Tom chats with the current client, waiting on a response from the credit bureau.
Tom's boss is, understandably, not happy with the situation. The current system
does not scale – at all. So, he wants to change the system somehow, to be able to
serve more clients. How can he do that? You will look at a couple of solutions in the
following section.

The Multi-Threaded Approach | 373

The Multi-Threaded Approach
Basically, there are two different approaches. One is to have multiple Toms. So,
every single teller will still work in the exact same simple and synchronous way as
before – we just have lots of them. Of course, the boss will need to have some kind
of organization to know which teller is available and which is working, whether
there are separate queues for each teller, or a single large queue, along with some
kind of distribution mechanism (that is, a system where a number is assigned to
each customer). The boss might also get one of those big office printers, instead of
having one printer per teller, and have some kind of rule in order to not mix up the
print jobs. The organization will be complex, but the task of every single teller will
be straightforward.

By now, you know we're not really discussing banks. This is the usual approach for
server-side processing. Grossly simplified, the server process will have multiple
sub-processes (called threads) that will work in parallel, and the main process will
orchestrate everything. Each thread will execute synchronously, with a well-defined
beginning, middle, and end. Since servers are usually machines with lots of resources,
with heavy loads, this approach makes sense. It can accommodate low or high loads
nicely, and the code that processes each request can be relatively simple and easy to
debug. It even makes sense to have the thread wait for some external resource (a file
from the file system, or data from the network or database), since we can always spin
up new threads if we have more requests. This is not the case with real live tellers.
We cannot just clone a new one if more clients come. The kind of waiting done by
the threads (or by Tom) is usually referred to as busy waiting. The thread is not doing
anything, but it's not available for any work, since it's busy doing something – it's busy
waiting. Just like Tom was actually busy chatting with the client while waiting for a
response from the credit bureau.

We have a system that can be massively parallel and concurrent, but still, each part of
it is run synchronously. The benefit of this approach is that we can serve many, many
clients at the same time. One obvious downside is the cost, both in hardware and in
complexity. While we managed to keep the client processing simple, we'll need a huge
infrastructure that takes care of everything else – adding tellers, removing tellers,
queueing customers, managing access to the office printer, and similar tasks.

This will use all the available resources of the bank (or the server), but that is fine,
since that's the whole point – to serve clients, as many and as fast as possible, and
nothing else.

However, there is another approach – asynchronous execution.

374 | Event Loop and Asynchronous Behavior

The Asynchronous Execution Approach

The other approach, the one taken by the web and, by extension, JavaScript and
TypeScript, is to use just a single thread – so Tom is still on his own. But, instead of
Tom idly chatting with a waiting client, he could do something else. If a situation
arises where he needs some verification from the back office, he just writes down
what he was doing and how far he got on a piece of paper, gives that paper to the
client, and sends them to the back of the queue. Tom is now ready to start serving the
next client in line. If that client does not need external resources, they are processed
completely and are free to leave. If they need something else that Tom needs to wait
for, they too are sent to the back of the line. And so on, and so forth. This way, if Tom
has any clients at all, he's processing their requests. He's never busy waiting, instead,
he's busy working. If a client needs to wait for a response, they do so separately from
Tom. The only time Tom is idle is when he has no clients at all.

The benefit of this approach is fairly obvious – before, Tom spent a lot of his time
chatting, now he is working all the time (of course, this benefit is from Tom's boss'
point of view – Tom liked the small talk). An additional benefit is that we know our
resource consumption up front. If we only have one teller, we know the square
footage that we will need for the office. However, there are some downsides as well.
The most important downside is that our clients now have to know our process
quite intimately. They will need to understand how to queue and requeue, how
to continue working from where they left off, and so on. Tom's work also got a lot
more complicated. He needs to know how to pause the processing of a client, how
to continue, how to behave if an external response is not received, and so on. This
model of working is usually called asynchronous and concurrent. Doing his job, Tom
will jump between multiple clients at the same time. More than one client will have
their process started but not finished. And there's no way for a client to estimate how
long it will take to process their task once it is started – it depends on how many other
clients Tom processes at the same time.

From the early days, this model made much more sense for the web. For starters,
web applications are processed on the device of the client. We should not make any
technical assumptions about it – as we cannot be sure about the kind of device that
the client might be using. In essence, a web page is a guest on the client's device
– and it should behave properly. For example, using up all of a device's resources
to show what amounts to a fancy animation is not proper behavior at all. Another
important issue is security. If we think of web pages as applications that contain some
code, we're basically executing someone's code on our machine whenever we enter a
web address in the browser's address bar.

The Multi-Threaded Approach | 375

The browser needs to make sure that the code on the page, even if it's malicious, is
restricted in what it can do to our machine. The web would not have been as popular
as it is today if visiting a website could make your computer explode.

So, since the browser cannot know in advance which pages it will be used for, it
was decided that each web page will only get access to a single thread. Also, for
security reasons, each web page will get a separate thread, so a running web page
cannot meddle in the execution of other pages that may execute at the same time
(with features such as web workers and Chrome applications, these restrictions are
somewhat loosened, but in principle, they still apply).

There is simply no way for a web page to spawn enough threads to swarm the
system, or for a web page to get the data from another web page. And, since a
web page needs to do lots of things at once, using the synchronous and sequential
approach was out of the question. That is why all the JavaScript execution
environments completely embraced the asynchronous, concurrent approach. This
was done to such an extent that some common synchronization techniques are,
intentionally, just not available in JavaScript.

For example, lots of other languages have a "wait some time" primitive, or a library
function that does that. For example, in the C# programming language, we can have
this code:

Console.WriteLine("We will wait 10 s");

Thread.Sleep(10000);

Console.WriteLine("... 10 seconds later");

Thread.Sleep(15000);

Console.WriteLine("... 15 more seconds later");

This code will write some text to the console, and 10 seconds later, write some more
text. During the 25 seconds of the wait, the thread this executes on will be completely
non-responsive, but the code written is simple and linear – easily understood,
easily changeable, and easily debuggable. JavaScript simply does not have such a
synchronous primitive, but it has an asynchronous variant in the setTimeout
function. The simplest equivalent code would be the following:

console.log("We will wait 10 s");

setTimeout(() => {

 console.log("... 10 seconds later");

 setTimeout(() => {

 console.log("... 15 more seconds later");

 }, 15000);

}, 10000);

376 | Event Loop and Asynchronous Behavior

It's obvious that this code is much more complex than the C# equivalent, but the
advantage that we get is that this code is non-blocking. In the 25 total seconds that
this code is executing, our web page can do everything it needs to do. It can respond
to events, the images can load and display, we can resize the window, scroll the text –
basically, the application will resume the normal and expected functionalities.

Note that while it's possible to block the JavaScript execution with some special
synchronous code, it's not easy to do it. When it does actually happen, the browser
can detect that it did happen and terminate the offending page:

Figure 10.1: Unresponsive page

Executing JavaScript
When a JavaScript execution environment, such as a node or a browser loads a
JavaScript file, it parses it and then runs it. All the functions that are defined in a
JavaScript file are registered, and all the code that is not in a function is executed. The
order of the execution is according to the code's position in the file. So, consider a file
having the following code:

console.log("First");

console.log("Second");

The console will always display this:

First

Second

Executing JavaScript | 377

The order of the output cannot be changed, without changing the code itself. This is
because the line with First will be executed completely – always – and then, and
only then, will the line with Second begin to execute. This approach is synchronous
because the execution is synchronized by the environment. We are guaranteed that
the second line will not start executing, until and unless the line above it is completely
done. But what happens if the line calls some function? Let's take a look at the
following piece of code:

function sayHello(name){

 console.log(`Hello ${name}`);

}

function first(){

 second();

}

function second(){

 third();

}

function third(){

 sayHello("Bob");

}

first();

When the code is parsed, the environment will detect that we have four functions –
first, second, third, and sayHello. It will also execute the line of code that
is not inside a function (first();), and that will start the execution of the first
function. But that function, while it's executing, calls the second function. The
runtime will then suspend the running of the first function, remember where it
was, and begin with the execution of the second function. This function, in turn, calls
the third function. The same thing happens again – the runtime starts executing
the third function, remembering that once that function is done, it should resume
with the execution of the second function, and that once second is done, it should
resume with the execution of the first function.

378 | Event Loop and Asynchronous Behavior

The structure the runtime uses to remember which function is active, and which are
waiting, is called a stack, specifically, the call stack.

Note

The term "stack" is used in the sense of a stack of dishes, or a stack of
pancakes. We can only add to the top, and we can only remove from
the top.

The executing functions are put one on top of the other, and the topmost function is
the one being actively executed, as shown in the following representation:

Figure 10.2: Stack

In the example, the third function will call the sayHello function, which will in
turn call the log function of the console object. Once the log function finishes
executing, the stack will start unwinding. That means that once a certain function
finishes executing, it will be removed from the stack, and the function below it will
be able to resume executing. So, once the sayHello function finishes executing,
the third function will resume and finish in turn. This will trigger the continuation
of the second function, and when that function is done as well, the first function
will continue, and eventually finish. When the first function finishes executing, the
stack will become empty – and the runtime will stop executing code.

Executing JavaScript | 379

It's worth noting that all of this execution is done strictly synchronously and
deterministically. We can deduce the exact order and number of function calls
just from looking at the code. We can also use common debugging tools such as
breakpoints and stack traces.

Exercise 10.01: Stacking Functions

In this exercise, we'll define few simple functions that call each other. Each of the
functions will log to the console when it starts executing and when it's about to
finish executing. We will analyze when and in what order the output is mapped to
the console:

Note

The code files for this exercise can be found at https://packt.link/X7QZQ.

1. Create a new file, stack.ts.

2. In stack.ts, define three functions called inner, middle, and outer. None
of them need to have parameters or return types:

function inner () {

}

function middle () {

}

function outer () {

}

3. In the body of the inner function, add a single log statement, indented by
four spaces:

function inner () {

 console.log(" Inside inner function");

}

https://packt.link/X7QZQ

380 | Event Loop and Asynchronous Behavior

4. In the body of the middle function, add a call to the inner function. Before
and after the call, add a log statement, indented by two spaces:

function middle () {

 console.log(" Starting middle function");

 inner();

 console.log(" Finishing middle function");

}

5. In the body of the outer function, add a call to the middle function. Before
and after the call, add a log statement:

function outer () {

 console.log("Starting outer function");

 middle();

 console.log("Finishing outer function");

}

6. After the function declaration, create a call only to the outer function:

outer();

7. Save the file, and compile it with the following command:

tsc stack.ts

8. Verify that the compilation ended successfully and that there is a stack.
js file generated in the same folder. Execute it in the node environment with
this command:

node stack.js

You will see the output looks like this:

Starting outer function

 Starting middle function

 Inside inner function

 Finishing middle function

Finishing outer function

The output shows which function started executing first (outer), as that is the first
message displayed. It can also be noted that the middle function finished executing
after the inner function was already finished, but before the outer function
was finished.

Browsers and JavaScript | 381

Browsers and JavaScript
When a web page is requested by the user, the browser needs to do lots of things.
We won't go into the details of each of them, but we'll take a look at how it handles
our code.

First of all, the browser sends the request to the server and receives an HTML file as
a response. Within that HTML file, there are embedded links to resources that are
needed for the page, such as images, stylesheets, and JavaScript code. The browser
then downloads those as well and applies them to the downloaded HTML. Images are
displayed, elements are styled, and JavaScript files are parsed and run.

The order in which the code is executed is according to the file's order in the HTML,
then according to the code's position in the file. But when are the functions called?
Let's say we have the following code in our file:

function sayHello() {

 console.log("Hello");

}

sayHello();

First, the sayHello function is registered, and then when it's called later, the
function actually executes and writes Hello to the console. Take a look at the
following code now:

function sayHello() {

 console.log("Hello");

}

function sayHi() {

 console.log("Hi");

}

sayHello();

sayHi();

sayHello();

382 | Event Loop and Asynchronous Behavior

When the file with the preceding code is processed, it will register that it has two
functions, sayHello and sayHi. Then it will detect that it has three invocations,
that is, there are three tasks that need to be processed. The environment has
something that is called the task queue, where it will put all the functions that need
to be executed, one by one. So, our code will be transformed into three tasks. Then,
the environment will check if the stack is actually empty, and if it is, it will take the first
task off the queue and start executing it. The stack will grow and shrink depending
on the execution of the code of the first task, and eventually, when the first task
is finished, it will be empty. So, after the first task is executed, the situation will be
as follows:

1. The execution stack will be empty.

2. The task queue will contain two tasks.

3. The first task will be completely done.

Once the stack is empty, the next task is dequeued and executed, and so on, until
both the task queue and the stack are empty, and all the code is executed. Again, this
whole process is done synchronously, in a specified order.

Events in the Browser

Now, take a look at a different example:

function sayHello() {

 console.log("Hello");

}

document.addEventListener("click", sayHello);

If you have this code in a JavaScript file that is loaded by the browser, you can see
that the sayHello function is registered but not executed. However, if you click
anywhere on the page, you will see that the Hello string appears on the console,
meaning the sayHello function got executed. If you click multiple times, you'll get
multiple instances of "Hello" on the console. And this code did not invoke the
sayHello function even once; you don't have the sayHello() invocation in the
code at all.

Environment APIs | 383

What happened is, you registered our function as an event listener. Consider that
you don't call our function at all, but the browser's environment will call it for us,
whenever a certain event occurs – in this case, the click event on the whole
document. And since those events are generated by the user, we cannot know if
and when our code will execute. Event listeners are the principal way that our code
can communicate with the page that it's on, and they are called asynchronously –
you don't know when or if the function will be invoked, nor how many times it will
be invoked.

What the browser does, when an event occurs, is to look up its own internal table
of registered event handlers. In our case, if a click event occurs anywhere on the
document (that's the whole web page), the browser will see that you have registered
the sayHello function to respond to it. That function will not be executed directly –
instead, the browser will place an invocation of the function in the task queue. After
that, the regular behavior explained previously takes effect. If the queue and stack are
empty, the event handler will begin executing immediately. Otherwise, our handler
will wait for its turn.

This is another core effect of asynchronous behavior – we simply cannot guarantee
that the event handler will execute immediately. It might be the case that it does, but
there is no way to know if the queue and stack are empty at a specific moment. If
they are, we'll get immediate execution, but if they're not, we'll have to wait our turn.

Environment APIs
Most of our interaction with the browser will be done in the same pattern – you
will define a function, and pass that function as a parameter to some browser API.
When and if that function will actually be scheduled for execution will depend on
the particulars of that API. In the previous case, you used the event handler API,
addEventListener, which takes two parameters, the name of an event, and the
code that will be scheduled when that event happens.

Note

You can get a list of different possible events at
https://developer.mozilla.org/en-US/docs/Web/Events.

https://developer.mozilla.org/en-US/docs/Web/Events

384 | Event Loop and Asynchronous Behavior

In the rest of this chapter, you will use two other APIs as well, the environment's
method to defer some code for later execution (setTimeout) and the ability to
call on external resources (popularly called AJAX). There are two different AJAX
implementations that we will be working with, the original XMLHttpRequest
implementation, and the more modern and flexible fetch implementation.

setTimeout

As mentioned previously, the environment offers no possibility to pause the
execution of JavaScript for a certain amount of time. However, the need to execute
some code after some set amount of time has passed arises quite often. So, instead
of pausing the execution, we get to do something different that has the same
outcome. We get to schedule a piece of code to get executed after an amount of time
has passed. To do that we use the setTimeout function. This function takes two
parameters: A function that will need to be executed, and the time, in milliseconds, it
should defer the execution of that function by:

setTimeout(function() {

 console.log("After one second");

}, 1000);

Here it means that the anonymous function that is passed as a parameter will be
executed after 1,000 milliseconds, that is, one second.

Exercise 10.02: Exploring setTimeout

In this exercise, you'll use the setTimeout environment API call to investigate how
asynchronous execution behaves and what it does:

Note

The code files for this exercise can be found at https://packt.link/W0mlS.

1. Create a new file, delays-1.ts.

2. In delays-1.ts, log some text at the beginning of the file:

console.log("Printed immediately");

https://packt.link/W0mlS

Environment APIs | 385

3. Add two calls to the setTimeout function:

setTimeout(function() {

 console.log("Printed after one second");

}, 1000);

setTimeout(function() {

 console.log("Printed after two second");

}, 2000);

Here, instead of creating a function and giving it to the setTimeout function
using its name, we have used an anonymous function that we have created
in-place. We can also use arrow functions instead of functions defined with the
function keyword.

4. Save the file, and compile it with the following command:

tsc delays-1.ts

5. Verify that the compilation ended successfully and that there is a delays-1.
js file generated in the same folder. Execute it in the node environment with
this command:

node delays-1.js

You will see the output looks like this:

Printed immediately

Printed after one second

Printed after two second

The second and third lines of the output should not appear immediately, but
after 1 and 2 seconds respectively.

6. In the delays-1.ts file, switch the two calls to the setTimeout function:

console.log("Printed immediately");

setTimeout(function() {

 console.log("Printed after two second");

}, 2000);

setTimeout(function() {

 console.log("Printed after one second");

}, 1000);

386 | Event Loop and Asynchronous Behavior

7. Compile and run the code again, and verify that the output behaves identically.
Even if the former setTimeout was executed first, its function parameter is
not scheduled to run until 2 seconds have passed.

8. In the delays-1.ts file, move the initial console.log to the bottom:

setTimeout(function() {

 console.log("Printed after two second");

}, 2000);

setTimeout(function() {

 console.log("Printed after one second");

}, 1000);

console.log("Printed immediately");

9. Compile and run the code again, and verify that the output behaves identically.
This illustrates one of the most common problems with code that behaves
asynchronously. Even though the line was at the bottom of our file, it was
executed first. It's much harder to mentally trace code that does not follow the
top-down paradigm we're used to.

10. Create a new file, delays-2.ts.

11. In delays-2.ts, add a single call to the setTimeout function, and set its
delay time to 0. This will mean that our code needs to wait 0 milliseconds in
order to execute:

setTimeout(function() {

 console.log("#1 Printed immediately?");

}, 0);

12. Add a console.log statement after the call to setTimeout:

console.log("#2 Printed immediately.");

13. Save the file, and compile it with the following command:

tsc delays-2.ts

14. Verify that the compilation ended successfully and that there is a delays-2.
js file generated in the same folder. Execute it in the node environment with
this command:

node delays-2.js

Environment APIs | 387

You will see the output looks like this:

#2 Printed immediately.

#1 Printed immediately?;

Well, that looks unexpected. Both lines appear basically immediately, but the one
that was in the setTimeout block, and was first in the code, came after the line
at the bottom of the script. And we explicitly told setTimeout not to wait, that
is, to wait 0 milliseconds before the code got executed.

To understand what happened, we need to go back to the call queue. When the
file was loaded, the environment detected that we had two tasks that needed to
be done, the call to setTimeout and the bottom call to console.log (#2). So,
those two tasks were put into the task queue. Since the stack was empty at that
time, the setTimeout call started executing, and #2 was left in the task queue. The
environment saw that it has a zero delay, so immediately took the function (#1), and
put it at the end of the task queue, after #2. So, after the setTimeout call was done,
we were left with two console.log tasks in the queue, with #2 being the first, and
#1 being the second.

They got executed sequentially, and on our console, we got #2 first, and #1 second.

AJAX (Asynchronous JavaScript and XML)

In the early days of the web, it was not possible to get data from a server once the
page was loaded. That was a huge inconvenience for developing dynamic web pages,
and it was solved by the introduction of an object called XMLHttpRequest. This
object enabled developers to get data from a server after the initial page load – and
since loading data from a server means using an external resource, it had to be done
in an asynchronous manner (even if it has XML right in the name, currently, it will
mostly be used for JSON data). To use this object, you'll need to instantiate it and use
a few of its properties.

To illustrate its usage, we'll try to get data about William Shakespeare from the Open
Library project. The URL that we'll use to retrieve that information is https://openlibrary.
org/authors/OL9388A.json, and the access method that we will use is GET, as we will
only be getting data.

https://openlibrary.org/authors/OL9388A.json
https://openlibrary.org/authors/OL9388A.json

388 | Event Loop and Asynchronous Behavior

The data received is of a specific format, defined by Open Library, so you'll start by
creating an interface for the data that you will actually use. You'll display only an
image of the Bard (received as an array of photo IDs), and the name, so you can
define the interface like this:

interface OpenLibraryAuthor {

 personal_name: string;

 photos: number[];

}

Next, create the XMLHttpRequest object, and assign it to a variable called xhr:

const xhr = new XMLHttpRequest();

Now you need to open a connection to our URL:

const url = "https://openlibrary.org/authors/OL9388A.json";

xhr.open("GET", url);

This call doesn't actually send anything, but it prepares the system for accessing
the external resource. Lastly, you need to actually send the request, using the
send method:

xhr.send();

Since the request is asynchronous, this call will execute and finish immediately.
In order to actually process the data once this request is done, you need to add
something to this object – a callback. That is a function that will not be executed by
us, but by the xhr object, once some event happens. This object has several events,
such as onreadystatechange, onload, onerror, ontimeout, and you can set
different functions to react to different events, but in this case, you will just use the
onload event. Create a function that will get the data from the response and show it
on the web page where our script is running:

const showData = () => {

 if (xhr.status != 200) {

 console.log(`An error occured ${xhr.status}: ${xhr.statusText}`);

 } else {

 const response: OpenLibraryAuthor = JSON.parse(xhr.response);

 const body = document.getElementsByTagName("body")[0];

 const image = document.createElement("img");

Environment APIs | 389

 image.src = `http://covers.openlibrary.org/a/id/${response.
photos[0]}-M.jpg`;
 body.appendChild(image);

 const name = document.createElement("h1");

 name.innerHTML = response.personal_name;

 body.appendChild(name);

 }

};

In this method, you will be using some properties of the xhr variable that was
defined previously, such as status, which gives us the HTTP status code of the
request, or response, which gives us the actual response. If we just call the
showData method by ourselves, we'll most likely get empty fields or an error, as the
response will not have finished. So, we need to give this function to the xhr object,
and it will use it to call the showData back:

xhr.onload = showData;

Save this code as shakespeare.ts, compile it, and add it to an HTML page using
the following:

 <script src="shakespeare.js"></script>

You will get a result similar to the following:

Figure 10.3: Retrieved image of William Shakespeare

390 | Event Loop and Asynchronous Behavior

Activity 10.01: Movie Browser Using XHR and Callbacks

As a TypeScript developer, you have been tasked with creating a simple page to view
movie data. The web page will be simple, with a text input field and a button. When
you enter the name of a movie in the search input field and press the button, general
information about the movie will be displayed on the web page, along with some
images relevant to the movie.

You can use The Movie Database (https://www.themoviedb.org/) as a source of general
data, specifically its API. You need to issue AJAX requests using XmlHttpRequest,
and use the data the site provides to format your own object. When using an API the
data will rarely, if ever, be in the format we actually need. This means that you will
need to use several API requests to get our data, and piecemeal construct our object.
A common TypeScript approach to this issue is to use two sets of interfaces – one that
exactly matches the format of the API, and one that matches the data that you use
in your application. In this activity, you need to use the Api suffix to denote those
interfaces that match the API format.

Another important thing to note is that this particular API does not allow completely
open access. You'll need to register for an API key and then send it in each API
request. In the setup code for this activity, three functions (getSearchUrl,
getMovieUrl, getPeopleUrl) will be provided that will generate the correct URLs
for the needed API requests, once the apiKey variable is set to the value you will
receive from The Movie Database. Also provided will be the base HTML, styling, as
well as the code used to actually display the data – all that is missing is the data itself.

Those resources are listed here:

• display.ts – A TypeScript file that houses the showResult and
clearResults methods, which you will call to display a movie and clear the
screen, respectively.

• interfaces.ts – A TypeScript file that contains the interfaces that you will
use. All interfaces that have an Api suffix are objects that you will receive from
The Movie Database API, and the rest (Movie and Character) will be used to
display the data.

• script.ts – A TypeScript file that has some boilerplate code that will start
the application. The search function is here, and that function will be the main
focus of this activity.

• index.html – An HTML file that has the basic markup for our web page.

• styles.css – A style sheet file that is used to style the results.

https://www.themoviedb.org/

Environment APIs | 391

The following steps should help you with the solution:

Note

The code files for this activity can be found at https://packt.link/Qo4dB.

1. In the script.ts file, locate the search function and verify that it takes a
single string parameter and that its body is empty.

2. Construct a new XMLHttpRequest object.

3. Construct a new string for the search result URL using the
getSearchUrl method.

4. Call the open and send methods of the xhr object.

5. Add an event handler for the xhr object's onload event. Take the
response and parse it as a JSON object. Store the result in a variable of the
SearchResultApi interface. This data will have the results of our search in a
results field. If you get no results, this means that our search failed.

6. If the search returned no results, call the clearResults method.

7. If the search returned some results, just take the first one and store it in a
variable, ignoring the other ones.

8. Inside the onload handler, in the successful search branch, create a new
XMLHttpRequest object.

9. Construct a new string for the search result URL using the
getMovieUrl method.

10. Call the open and send method of the constructed xhr object.

11. Add an event handler for the xhr objects's onload event. Take the
response, and parse it as a JSON object. Store the result in a variable of the
MovieResultApi interface. This response will have the general data for our
movie, specifically, everything except the people who were involved in the movie.
You will need to have another call to the API to get the data about the people.

12. Inside the onload handler, in the successful search branch, create a new
XMLHttpRequest object.

https://packt.link/Qo4dB

392 | Event Loop and Asynchronous Behavior

13. Construct a new string for the search result URL using the
getPeopleUrl method.

14. Call the open and send method of the constructed xhr object.

15. Add an event handler for the xhr object's onload event. Take the
response, and parse it as a JSON object. Store the result in a variable of the
PeopleResultApi interface. This response will have data about the people
who were involved in the movie.

16. Now you actually have all the data you need, so you can create your own object
inside the people onload handler, which is inside the movie onload handler,
which is inside the search onload handler.

17. The people data has cast and crew properties. You'll only take the first six cast
members, so first sort the cast property according to the order property of
the cast members. Then slice off the first six cast members into a new array.

18. Transform the cast data (which is CastResultApi objects) into our
own Character objects. You need to map the character field of
CastResultApi to the name field of Character, the name field to the
actor name, and the profile_path field to the image property.

19. From the crew property of the people data, you'll only need the director and
the writer. Since there can be multiple directors and writers, you'll get the
names of all directors and writers and concatenate them, respectively. For the
directors, from the crew property, filter the people who have a department
of Directing and a job of Director. For those objects, take the name
property, and join it together with an & in between.

20. For the writers, from the crew property, filter the people who have a
department of Writing and a job of Writer. For those objects, take the
name property, and join it together with an & in between.

21. Create a new Movie object (using object literal syntax). Fill in all the properties
of the Movie object using the data from the movie and people responses you
prepared so far.

22. Call the showResults function with the movie you constructed.

23. In your parent directory (Activity01 in this case), install dependencies
with npm i.

24. Compile the program using tsc ./script.ts ./interfaces.ts ./
display.ts.

Environment APIs | 393

25. Verify that the compilation ended successfully.

26. Open index.html using the browser of your choice.

You should see the following in your browser:

Figure 10.4: The final web page

Note

The solution to this activity can be found via this link.

We will improve this application further in Activity 10.02, Movie Browser using
fetch and Promises, and Activity 10.03, Movie Browser using fetch and async/await.
However, before we do that, you need to learn about Promises and async/await
in TypeScript.

394 | Event Loop and Asynchronous Behavior

Promises
Using callbacks for asynchronous development gets the job done – and that is great.
However, in many applications, our code needs to use external or asynchronous
resources all the time. So, very quickly, we'll get to a situation where inside our
callback, there is another asynchronous call, which requires a callback inside the
callback, which in turn needs a callback on its own….

It was (and in some cases, it still is) not uncommon to be a dozen levels deep inside
the callback hole.

Exercise 10.03: Counting to Five

In this exercise, we'll create a function that, when executed, will output the English
words one through five. Each word will appear on the screen 1 second after the last
word was displayed:

Note

The code files for this exercise can be found at https://packt.link/zD7TT.

1. Create a new file, counting-1.ts.

2. In counting-1.ts, add an array with the English number names up to and
including five:

const numbers = ["One", "Two", "Three", "Four", "Five"];

3. Add a single call to the setTimeout function, and print out the first number
after a second:

setTimeout(function() {

 console.log(numbers[0]);

}, 1000);

4. Save the file, and compile it with the following command:

tsc counting-1.ts

5. Verify that the compilation ended successfully and that there is a counting-1.
js file generated in the same folder. Execute it in the node environment with
this command:

node counting-1.js

https://packt.link/zD7TT

Promises | 395

You will see the output looks like this:

One

The line should appear 1 second after the application was run.

6. In the counting-1.ts file, inside the setTimeout function, below
console.log, add another, nested, call to the setTimeout function:

setTimeout(function() {

 console.log(numbers[0]);

 setTimeout(function() {

 console.log(numbers[1]);

 }, 1000);

}, 1000);

7. Compile and run the code again, and verify that the output has an extra line,
displayed 1 second after the first:

One

Two

8. In the counting-1.ts file, inside the nested setTimeout function, above
console.log, add another nested call to the setTimeout function:

setTimeout(function() {

 console.log(numbers[0]);

 setTimeout(function() {

 setTimeout(function() {

 console.log(numbers[2]);

 }, 1000);

 console.log(numbers[1]);

 }, 1000);

}, 1000);

9. In the innermost setTimeout function, below console.log, add yet another
nested call to setTimeout, and repeat the process for the fifth number as well.
The code should look like this:

setTimeout(function() {

 console.log(numbers[0]);

 setTimeout(function() {

 setTimeout(function() {

 console.log(numbers[2]);

 setTimeout(function() {

396 | Event Loop and Asynchronous Behavior

 console.log(numbers[3]);

 setTimeout(function() {

 console.log(numbers[4]);

 }, 1000);

 }, 1000);

 }, 1000);

 console.log(numbers[1]);

 }, 1000);

}, 1000);

10. Compile and run the code again, and verify that the output appears in the
correct order as shown:

One

Two

Three

Four

Five

In this simple example, we implemented a simple functionality – counting to five.
But as you can already see, the code is becoming extremely messy. Just imagine if
we needed to count to 20 instead of 5. That would be a downright unmaintainable
mess. While there are ways to make this specific code look a bit better and more
maintainable, in general, that's not the case. The use of callbacks is intrinsically
connected with messy and hard-to-read code. And messy and hard-to-read code is
the best place for bugs to hide, so callbacks do have a reputation of being the cause
of difficult-to-diagnose bugs.

An additional problem with callbacks is that there cannot be a unified API across
different objects. For example, we needed to explicitly know that in order to receive
data using the xhr object, we need to call the send method and add a callback
for the onload event. And we needed to know that in order to check whether
the request was successful or not, we have to check the status property of the
xhr object.

What are Promises?

Fortunately, we can promise you that there is a better way. That way was initially
done by third-party libraries, but it has proven to be so useful and so widely adopted
that it was included in the JavaScript language itself. The logic behind this solution
is rather simple. Each asynchronous call is basically a promise that, sometime in the
future, some task will be done and some result will be acquired. As with promises in
real life, we can have three different states for a promise:

Promises | 397

• A promise might not be resolved yet. This means that we need to wait
some more time before we get a result. In TypeScript, we call these
promises "pending."

• A promise might be resolved negatively – the one who promised broke the
promise. In TypeScript, we call these promises "rejected" and usually we get
some kind of an error as a result.

• A promise might be resolved positively – the one who promised fulfilled the
promise. In TypeScript, we call these promises "resolved" and we get a value out
of them – the actual result.

And since promises are objects themselves, this means that promises can be
assigned to variables, returned from functions, passed as arguments into functions,
and lots of other things we're able to do with regular objects.

Another great feature of promises is that it is relatively easy to write a promisified
wrapper around an existing callback-based function. Let's try to promisify the
Shakespeare example. We'll start by taking a look at the showData function. This
function needs to do a lot of things, and those things are sometimes not connected
to one another. It needs to both process the xhr variable to extract the data, and it
needs to know what to do with that data. So, if the API we're using changes, we'll need
to change our function. If the structure of our web page changes, that is, if we need to
display a div instead of an h1 element, we'll need to change our function. If we need
to use the author data for something else, we'll also need to change our function.
Basically, if anything needs to happen to the response, it needs to happen then and
there. We have no way to somehow defer that decision to another piece of code. This
creates unnecessary coupling inside our code, which makes it harder to maintain.

Let's change that. We can create a new function that will return a promise, which will
provide the data about the author. It will have no idea what that data will be used for:

const getShakespeareData = () => {

 const result = new Promise<OpenLibraryAuthor>((resolve, reject) => {

 const xhr = new XMLHttpRequest();

 const url = "https://openlibrary.org/authors/OL9388A.json";

 xhr.open("GET", url);

 xhr.send();

 xhr.onload = () => {

 if (xhr.status != 200) {

 reject({

 error: xhr.status,

398 | Event Loop and Asynchronous Behavior

 message: xhr.statusText

 })

 } else {

 const response: OpenLibraryAuthor = JSON.parse(xhr.response);

 resolve(response);

 }

 }

 });

 return result;

};

This function returns a Promise object, which was created using the Promise
constructor. This constructor takes a single argument, which is a function. That
function takes two arguments as well (also functions), which are by convention called
resolve and reject. You can see that the function inside the constructor just
creates an xhr object, calls its open and send methods, sets its onload property,
and returns. So, basically, nothing gets done, except that the request is fired off.

A promise thus created will be in the pending state. And the promise stays in this
state until one of the resolve or reject functions is called inside the body. If the
reject function is called, it will transition to a rejected state, and we'll be able to use
the catch method of the Promise object to handle the error, and if the resolve
function is called, it will transition to the resolved state, and we'll be able to use the
then method of the Promise object.

One thing that we should note is that this method does nothing that is UI-related.
It does not print any errors on the console or change any DOM elements. It simply
promises us that it will get us an OpenLibraryAuthor object. Now, we're free to
use this object however we want:

getShakespeareData()

 .then(author => {

 const body = document.getElementsByTagName("body")[0];

 const image = document.createElement("img");

 image.src = `http://covers.openlibrary.org/a/id/${author.
photos[0]}-M.jpg`;
 body.appendChild(image);

 const name = document.createElement("h1");

 name.innerHTML = author.personal_name;

 body.appendChild(name);

 })

Promises | 399

 .catch(error => {

 console.log(`An error occured ${error.error}: ${error.message}`);

 })

In this piece of code, we call the getShakespeareData data function, and then
on its result, we're calling two methods, then and catch. The then method only
executes if the promise is in the resolved state and it takes in a function that will get
the result. The catch method only executes if the promise is in the rejected state,
and it will get the error as an argument to its function.

One important note for the then and catch methods – they also return promises.
This means that Promise objects are chainable, so instead of going in depth, as we
did with callbacks, we can go in length, so to say. To illustrate that point, let's count to
five once again.

Note

A more comprehensive discussion of Promises will be presented in
Chapter 12, Guide to Promises in TypeScript.

Exercise 10.04: Counting to Five with Promises

In this exercise, we'll create a function that, when executed, will output the English
words one through five. Each word will appear on the screen 1 second after the last
one was displayed:

Note

The code files for this exercise can be found at https://packt.link/nlge8.

1. Create a new file, counting-2.ts.

2. In counting-2.ts, add an array with the English number names up to and
including five:

const numbers = ["One", "Two", "Three", "Four", "Five"];

https://packt.link/nlge8

400 | Event Loop and Asynchronous Behavior

3. Add a promisified wrapper of the setTimeout function. This wrapper will only
execute when the given timeout expires:

const delay = (ms: number) => {

 const result = new Promise<void>((resolve, reject) => {

 setTimeout(() => {

 resolve();

 }, ms)

 });

 return result;

}

Since our promise will not return any meaningful result, instead just resolving
after a given amount of milliseconds, we have provided void as its type.

4. Call the delay method with a parameter of 1000, and after its resolution, print
out the first number:

delay(1000)

.then(() => console.log(numbers[0]))

5. Save the file, and compile it with the following command:

tsc counting-2.ts

6. Verify that the compilation ended successfully and that there is a counting-2.
js file generated in the same folder. Execute it in the node environment with
this command:

node counting-2.js

You will see the output looks like this:

One

The line should appear 1 second after the application was run.

7. In the counting-2.ts file, after the then line, add another then line. Inside
it, call the delay method again, with a timeout of 1 second:

delay(1000)

.then(() => console.log(numbers[0]))

.then(() => delay(1000))

We can do this because the result of the then method is Promise, which has
its own then method.

Promises | 401

8. After the last then line, add another then line, inside which you print out the
second number:

delay(1000)

.then(() => console.log(numbers[0]))

.then(() => delay(1000))

.then(() => console.log(numbers[1]))

9. Compile and run the code again, and verify that the output has an extra line,
displayed 1 second after the first.

10. In the counting-2.ts file, add two more then lines for the third, fourth, and
fifth numbers as well. The code should look like this:

delay(1000)

.then(() => console.log(numbers[0]))

.then(() => delay(1000))

.then(() => console.log(numbers[1]))

.then(() => delay(1000))

.then(() => console.log(numbers[2]))

.then(() => delay(1000))

.then(() => console.log(numbers[3]))

.then(() => delay(1000))

.then(() => console.log(numbers[4]))

11. Compile and run the code again, and verify that the output appears in the
correct order.

Let's compare this code with the code of the previous exercise. It's not the
cleanest code, but its function is relatively obvious. We can see how we could
expand this code to count to 20. And the major benefit here is that this code,
while asynchronous, is still sequential. We can reason about it, and the lines that
are at the top will execute before the lines at the bottom. Furthermore, since we
have objects now, we can even refactor this code into an even simpler and more
extensible format – we can use a for loop.

12. In the counting-2.ts file, remove the lines starting with delay(1000) until
the end of the file. Add a line that will define a resolved promise:

let promise = Promise.resolve();

402 | Event Loop and Asynchronous Behavior

13. Add a for loop that, for each number of the numbers array, will add to the
promise chain a delay of 1 second, and print the number:

for (const number of numbers) {

 promise = promise

 .then(() => delay(1000))

 .then(() => console.log(number))

};}

14. Compile and run the code again, and verify that the output appears in the
correct order as shown:

One

Two

Three

Four

Five

Activity 10.02: Movie Browser Using fetch and Promises

In this activity, we will be repeating the previous activity. The major difference is
that, instead of using XMLHttpRequest and its onload method, we'll be using
the fetch web API. In contrast to the XMLHttpRequest class, the fetch web API
returns a Promise object, so instead of nesting our callbacks to have multiple API
calls, we can have a chain of promise resolutions that will be far easier to understand.

The activity has the same files and resources as the previous activity.

The following steps should help you with the solution:

1. In the script.ts file, locate the search function and verify that it takes a
single string parameter and that its body is empty.

2. Above the search function, create a helper function called getJsonData.
This function will use the fetch API to get data from an endpoint and format it
as JSON. It should take a single string called url as a parameter, and it should
return a Promise.

3. In the body of the getJsonData function, add code that calls the fetch
function with the url parameter, and then call the json method on the
returned response.

Promises | 403

4. In the search method, construct a new string for the search result URL using
the getSearchUrl method.

5. Call the getJsonData function with the searchUrl as a parameter.

6. Add a then handler to the promise returned from getJsonData. The handler
takes a single parameter of the type SearchResultApi.

7. In the body of the handler, check whether we have any results and if we don't,
throw an error. If we do have results, return the first item. Note that the handler
returns an object with id and title properties, but the then method actually
returns a Promise of that data. This means that after the handler, we can chain
other then calls.

8. Add another then call to the previous handler. This handler will take a
movieResult parameter that contains the id and title of the movie. Use
the id property to call the getMovieUrl and getPeopleUrl methods to,
respectively, get the correct URLs for the movie details and for the cast and crew.

9. After getting the URLs, call the getJsonData function with both, and assign the
resulting values to variables. Note that the getJsonData(movieUrl) call will
return a Promise of MovieResultApi, and getJsonData(peopleUrl)
will return a Promise of PeopleResultApi. Assign those result values to
variables called dataPromise and peoplePromise.

10. Call the static Promise.all method with dataPromise and
peoplePromise as parameters. This will create another promise based on
those two values, and this promise will be resolved successfully if and only if
both (that is, all) promises that are contained within resolve successfully. Its
return value will be a Promise of an array of results.

11. Return the promise generated by the Promise.all call from the handler.

12. Add another then handler to the chain. This handler will take the array returned
from Promise.all as a single parameter.

13. Deconstruct the parameter into two variables. The first element of the array
should be the movieData variable of type MovieResultApi, and the
second element of the array should be the peopleData variable of type
PeopleResultApi.

404 | Event Loop and Asynchronous Behavior

14. The people data has cast and crew properties. We'll only take the first six cast
members, so first sort the cast property according to the order property of
the cast members. Then slice off the first six cast members into a new array.

15. Transform the cast data (which is CastResultApi objects) into your
own Character objects. We need to map the character field of
CastResultApi to the name field of Character, the name field to the
actor name, and the profile_path field to the image property.

16. From the crew property of the people data, we'll only need the director and
the writer. Since there can be multiple directors and writers, we'll get the
names of all directors and writers and concatenate them, respectively. For the
directors, from the crew property, filter the people who have a department
of Directing and a job of Director. For those objects, take the name
property, and join it together with an & in between.

17. For the writers, from the crew property, filter the people who have a
department of Writing and a job of Writer. For those objects, take the
name property, and join it together with an & in between.

18. Create a new Movie object (using object literal syntax). Fill in all the properties
of the Movie object using the data from the movie and people responses we've
prepared so far.

19. Return the Movie object from the handler.

20. Note that we did not do any UI interactions in our code. We just received a
string, did some promise calls, and returned a value. The UI work can now be
done in UI-oriented code. In this case, that's in the click event handler of
the search button. We should simply add a then handler to the search call
that will call the showResults method, and a catch handler that will call the
clearResults method.

Although we used fetch and promises in this activity, and our code is now much
more efficient but complex, the basic function of the website will be the same and
you should see an output similar to the previous activity.

Note

The code files for this activity can be found at https://packt.link/IeDTF.
The solution to this activity can be found via this link.

https://packt.link/IeDTF

Promises | 405

async/await

Promises solved the problem of callbacks quite nicely. However, often, they carry with
them lots of unneeded fluff. We need to write lots of then calls, and we need to be
careful not to forget to close any parentheses.

The next step is to add a piece of syntactic sugar to our TypeScript skills. Unlike
the other things in this chapter, this feature originated in TypeScript, and was later
adopted in JavaScript as well. I'm talking about the async/await keywords. These
are two separate keywords, but they are always used together, so the whole feature
became known as async/await.

What we do is we can add the async modifier to a certain function, and then, in
that function, we can use the await modifier to execute promises easily. Let's go
once more to our Shakespearean example, and let's wrap the code we used to call
getShakespeareData inside another function, simply called run:

function run() {

 getShakespeareData()

 .then(author => {

 const body = document.getElementsByTagName("body")[0];

 const image = document.createElement("img");

 image.src = `http://covers.openlibrary.org/a/id/${author.
photos[0]}-M.jpg`;
 body.appendChild(image);

 const name = document.createElement("h1");

 name.innerHTML = author.personal_name;

 body.appendChild(name);

 })

 .catch(error => {

 console.log(`An error occured ${error.error}: ${error.message}`);

 })

}

run();

This code is functionally equivalent to the code we had previously. But now, we have
a function that we can mark as an async function, like this:

async function run() {

406 | Event Loop and Asynchronous Behavior

Now, we're allowed to just get the result of a promise and put it inside of a variable.
So, the whole then invocation will become this:

 const author = await getShakespeareData();

 const body = document.getElementsByTagName("body")[0];

 const image = document.createElement("img");

 image.src = `http://covers.openlibrary.org/a/id/${author.
photos[0]}-M.jpg`;
 body.appendChild(image);

 const name = document.createElement("h1");

 name.innerHTML = author.personal_name;

 body.appendChild(name);

You can see that we don't have any wrapping function calls anymore. The catch
invocation can be replaced with a simple try/catch construct, and the final version
of the run function will look like this:

async function run () {

 try {

 const author = await getShakespeareData();

 const body = document.getElementsByTagName("body")[0];

 const image = document.createElement("img");

 image.src = `http://covers.openlibrary.org/a/id/${author.
photos[0]}-M.jpg`;
 body.appendChild(image);

 const name = document.createElement("h1");

 name.innerHTML = author.personal_name;

 body.appendChild(name);

 } catch (error) {

 console.log(`An error occured ${error.error}: ${error.message}`);

 }

}

You will notice that the amount of code that is deeply nested is drastically reduced.
Now we can look at the code, and have a good idea of what it does, just from a quick
glance. This is still the same, deeply asynchronous code, the only difference is that it
looks almost synchronous and definitely sequential.

Promises | 407

Exercise 10.05: Counting to Five with async and await

In this exercise, we'll create a function that, when executed, will output the English
words one through five. Each word will appear on the screen 1 second after the last
one was displayed:

Note

The code files for this exercise can be found at https://packt.link/TaH6b.

1. Create a new file, counting-3.ts.

2. In counting-3.ts, add an array with the English number names up to and
including five:

const numbers = ["One", "Two", "Three", "Four", "Five"];

3. Add a promisified wrapper of the setTimeout function. This wrapper will only
execute when the given timeout expires:

const delay = (ms: number) => {

 const result = new Promise<void>((resolve, reject) => {

 setTimeout(() => {

 resolve();

 }, ms)

 });

 return result;

}

Since our promise will not return any meaningful results, instead of just resolving
after a given number of milliseconds, we have provided void as its type.

4. Create an empty async function called countNumbers and execute it on the
last line of the file:

async function countNumbers() {

}

countNumbers();

https://packt.link/TaH6b

408 | Event Loop and Asynchronous Behavior

5. Inside the countNumbers function, await the delay method with a parameter
of 1000, and after its resolution, print out the first number:

async function countNumbers() {

 await delay(1000);

 console.log(numbers[0]);

}

6. Save the file, and compile it with the following command:

tsc counting-3.ts

7. Verify that the compilation ended successfully and that there is a counting-3.
js file generated in the same folder. Execute it in the node environment with
this command:

node counting-3.js

You will see the output looks like this:

One

The line should appear 1 second after the application was run.

8. In the counting-3.ts file, after the console.log line, add two more lines
for the rest of the numbers as well. The code should look like this:

async function countNumbers() {

 await delay(1000);

 console.log(numbers[0]);

 await delay(1000);

 console.log(numbers[1]);

 await delay(1000);

 console.log(numbers[2]);

 await delay(1000);

 console.log(numbers[3]);

 await delay(1000);

 console.log(numbers[4]);

}

9. Compile and run the code again, and verify that the output appears in the
correct order.

Since the code is completely identical for all the numbers, it's trivial to replace it
with a for loop.

Promises | 409

10. In the counting-3.ts file, remove the body of the countNumbers function,
and replace it with a for loop that, for each number of the numbers array, will
await a delay of a second, and then print the number:

for (const number of numbers) {

 await delay(1000);

 console.log(number);

};

11. Compile and run the code again, and verify that the output appears in the
correct order:

One

Two

Three

Four

Five

Activity 10.03: Movie Browser Using fetch and async/await

In this activity, we will be improving on the previous activity. The major difference
is that instead of using the then method of the Promises class, we'll use the
await keyword to do that for us magically. Instead of a chain of then calls,
we'll just have code that looks completely regular, with some await statements
peppered throughout.

The activity has the same files and resources as the previous activity.

The following steps should help you with the solution:

1. In the script.ts file, locate the search function and verify that it takes a
single string parameter and that its body is empty. Note that this function is now
marked with the async keywords, which allows us to use the await operator.

2. Above the search function, create a helper function called getJsonData.
This function will use the fetch API to get data from an endpoint and format it
as JSON. It should take a single string called url as a parameter, and it should
return a promise.

3. In the body of the getJsonData function, add code that calls the fetch
function with the url parameter, and then call the json method on the
returned response.

410 | Event Loop and Asynchronous Behavior

4. In the search method, construct a new string for the search result URL using
the getSearchUrl method.

5. Call the getJsonData function with searchUrl as a parameter, and await
the result. Place the result into the SearchResultApi variable.

6. Check whether we have any results and if we don't, throw an error. If we do
have results, set the first item of the result property into a variable called
movieResult. This object will contain the id and title properties of
the movie.

7. Use the id property to call the getMovieUrl and getPeopleUrl methods
to, respectively, get the correct URLs for the movie details and for the cast
and crew.

8. After getting the URLs, call the getJsonData function with both, and assign
the resulting values to variables. Note that the getJsonData(movieUrl) call
will return a promise of MovieResultApi, and getJsonData(peopleUrl)
will return a promise of PeopleResultApi. Assign those result values to
variables called dataPromise and peoplePromise.

9. Call the static Promise.all method with dataPromise and
peoplePromise as parameters. This will create another promise based on
those two values, and this promise will be resolved successfully if and only if
both (that is, all) promises that are contained within resolve successfully. Its
return value will be a promise of an array of results. await this promise, and
place its result into a variable of type array.

10. Deconstruct that array into two variables. The first element of the array
should be the movieData variable of type MovieResultApi, and the
second element of the array should be the peopleData variable of type
PeopleResultApi.

11. The people data has cast and crew properties. We'll only take the first six cast
members, so first sort the cast property according to the order property of
the cast members. Then slice off the first six cast members into a new array.

12. Transform the cast data (which is CastResultApi objects) into our
own Character objects. We need to map the character field of
CastResultApi to the name field of Character, the name field to the
actor name, and the profile_path field to the image property.

Promises | 411

13. From the crew property of the people data, we'll only need the director and
the writer. Since there can be multiple directors and writers, we'll get the
names of all directors and writers and concatenate them, respectively. For the
directors, from the crew property, filter the people who have a department
of Directing and a job of Director. For those objects, take the name
property, and join it together with an & in between.

14. For the writers, from the crew property, filter the people who have a
department of Writing and a job of Writer. For those objects, take the
name property, and join it together with an & in between.

15. Create a new Movie object (using object literal syntax). Fill in all the properties
of the Movie object using the data from the movie and people responses we've
prepared so far.

16. Return the Movie object from the function.

17. Note that we did not do any UI interactions in our code. We just received a
string, did some promise calls, and returned a value. The UI work can now be
done in UI-oriented code. In this case, that's in the click event handler of
the search button. We should simply add a then handler to the search call
that will call the showResults method, and a catch handler that will call the
clearResults method.

Although we used fetch and async/await in this activity, and our code is now
just as efficient but less complex compared with the previous activity, the basic
function of the website will be the same and you should see an output similar to
the previous activity.

Note

The code files for this activity can be found at https://packt.link/fExtR.
The solution to this activity can be found via this link.

https://packt.link/fExtR

412 | Event Loop and Asynchronous Behavior

Summary
In this chapter, we looked at the execution model that is used on the web, and how
we can use it to actually execute code. We glanced at the surface of the intricacies
of asynchronous development – and how we can use it to load data from external
resources. We showed the problems that arise when we get too deep into the hole
of callbacks and managed to exit it using promises. Finally, we were able to await
our asynchronous code, and have the best of both words – code that looks like it's
synchronous, but that executes asynchronously.

We also tested the skills developed in the chapter by creating a movie data viewer
browser, first using XHR and callbacks, and then improved it progressively using
fetch and promises, and then using fetch and async/await.

The next chapter will teach you about higher-order functions and callbacks.

Overview

This chapter introduces higher-order functions and callbacks in TypeScript.
You will first understand what higher-order functions are, why they are
useful, and how to type them correctly in TypeScript. Then, the chapter
will teach you about what callbacks are, why they are used, and in what
situations. You will also learn about why callbacks are so widely used,
especially in Node.js.

Additionally, the chapter will provide you with a basic introduction to the
event loop. Not only will you learn about "callback hell," but also how you
can avoid it. By the end of this chapter, you will be able to create a well-
typed higher-order pipe function.

Higher-Order Functions and

Callbacks

11

416 | Higher-Order Functions and Callbacks

Introduction
You have already covered the use of functions in TypeScript in Chapter 3, Functions.
This chapter will introduce you to higher-order functions in TypeScript. Hitherto, with
all the functions that you have used in this book, you either passed parameters or
arguments into them. However, JavaScript and, by extension, TypeScript, has many
ways of composing and writing code. In this chapter, we'll explore one such pattern
– higher-order functions/callbacks (hereinafter called HOCs) are functions that either
take in another function as an argument or return a function (or both).

Additionally, this chapter also explores the concept of callbacks. Callbacks are
required in Node.js, as well as in other JavaScript runtimes, since the language is
single-threaded and runs in an event loop, and so, in order to not hold up the main
thread, we let other code run, and when needed it will call our code back. This
chapter will also touch upon "callback hell" and equip you with the skills needed to
avoid it.

Introduction to HOCs – Examples

HOCs are frequently used in JavaScript, and especially in Node.js, where even the
simplest backend server application contains it. Here is an example:

const http = require("http");

http.createServer((req, res) => {

 res.write("Hello World");

 res.end();

}).listen(3000, () => {

 console.log("🚀 running on port 3000");

});

Notice that the createServer function takes in a request listener function,
which will be used to handle any incoming requests. This function will take in two
arguments, req and res – the request object and the response object, respectively:

Introduction | 417

Figure 11.1: Part of the http module in Node.js describing the callback
structure of RequestListener

In addition, the listen method also takes in an optional function that will run when
the server is ready to listen for requests.

Both createServer and listen are HOCs because they take in functions as
arguments. These argument functions are usually called callbacks, since this is how
our code can get "called back" (notified) when something happens, and, if needed,
handle it appropriately. In the preceding example, the HTTP server needs to know
how to handle incoming requests, so it calls our given requestListener function,
which provides the logic for that. Later, the listen function wants to let us know
when it's ready to accept requests, and it calls our given callback when it is.

Another example is the setTimeout function, which takes in another function as an
argument to call later – after the timeout has passed:

setTimeout(() => {

 console.log('5 seconds have passed');

}, 5000);

function setTimeout(callback: (...args: any[]) => void, ms: number,
...args: any[]): NodeJS.Timeout;

Another example of an HOC that does not take a callback function is the memoize
function. This takes in a function to memoize as an argument and returns a function
with the same signature:

function memoize<Fn extends AnyFunction>(fn: Fn, keyGetter?:
KeyGetter<Fn>): Fn;

418 | Higher-Order Functions and Callbacks

Note

The memoize function takes in a function and returns a function with the
same type signature; however, the returned function caches the results of
the original function. This is usually useful for expensive functions that take
a long time to run and return the same output for the same arguments.
Chapter 9, Generics and Conditional Types, Exercise 9.01, implements such
a memoize function.

In the following sections, we'll explore both kinds of HOCs in more detail and see how
we can avoid some of the pitfalls they introduce.

Higher-Order Functions
Higher-order functions are regular functions that follow at least one of these
two principles:

1. They take one or more functions as arguments.

2. They return a function as a result.

For example, let's say we want to write a greet function:

Example01.ts

1 function greet(name: string) {
2 console.log(`Hello ${name}`);
3 }
4
5 greet('John');

Link to the preceding example: https://packt.link/GCFjN

The following is the output:

Hello John

https://packt.link/GCFjN

Higher-Order Functions | 419

This is a fine function, but it's very limited – what if each person has a favorite
greeting? Consider the following example:

Example02.ts

1 const favoriteGreetings: Record<string, string> = {
2 John: 'Hey',
3 Jane: 'Hello',
4 Doug: 'Howdy',
5 Sally: 'Hey there',
6 };

Link to this example: https://packt.link/CXBrV

We could put that inside the greet function:

function greet(name: string) {

 const greeting = favoriteGreetings[name] || 'Hello';

 console.log(`${greeting} ${name}`);

}

greet('John');

The following is the output:

Hey John

But that means that the greet function is no longer reusable by itself since, if we
were to take it, we'd also need to bring along the favoriteGreetings mapping
with it. Instead, we could pass it in as a parameter:

Example03.ts

1 function greet(name: string, mapper: Record<string, string>) {
2 const greeting = mapper[name] || 'Hello';
3 console.log(`${greeting} ${name}`);
4 }
5
6 greet('John', favoriteGreetings); // prints 'Hey John'
7 greet('Doug', favoriteGreetings); // prints 'Howdy Doug'

Link to this example: https://packt.link/bG0p7

https://packt.link/CXBrV
https://packt.link/bG0p7

420 | Higher-Order Functions and Callbacks

The following is the output:

Hey John

Howdy Doug

This works, but it's very cumbersome to pass in the favoriteGreetings object in
every call.

We can improve on this by making the greet function accept a function that will
serve as a more generic solution to the favorite-greeting issue – it will accept the
name and return the greeting to use:

Example04.ts

1 function greet(name: string, getGreeting: (name: string) => string) {
2 const greeting = getGreeting(name);
3 console.log(`${greeting} ${name}`);
4 }
5
6 function getGreeting(name: string) {
7 const greeting = favoriteGreetings[name];
8 return greeting || 'Hello';
9 }
10
11 greet('John', getGreeting); // prints 'Hey John'
12 greet('Doug', getGreeting); // prints 'Howdy Doug'

Link to this example: https://packt.link/uRe2r

The following is the output:

Hey John

Howdy Doug

This may feel the same as our previous solution, which took the mapper object as an
argument, but passing in a function is much more powerful. We can do a lot more
with a function than with a static object. For example, we could base the greeting on
the time of day:

Example05.ts

1 function getGreeting(name: string) {
2 const hours = new Date().getHours();
3 if (hours < 12) {
4 return 'Good morning';
5 }
6
7 if (hours === 12) {
8 return 'Good noon';
9 }
10
11 if (hours < 18) {
12 return 'Good afternoon';
13 }
14

https://packt.link/uRe2r

Higher-Order Functions | 421

15 return 'Good night';
16 }
17
18 greet('John', getGreeting); // prints 'Good morning John' if it's morning
19 greet('Doug', getGreeting); // prints 'Good morning Doug' if it's morning

Link to this example: https://packt.link/xSYDF

An example output would be as follows:

Good afternoon John

Good afternoon Doug

We could even go further and make the function return a random greeting, get it
from a remote server, and a lot more, something which we couldn't do without
passing in a function to the greet function.

By making greet accept a function, we opened up endless possibilities, while
keeping greet reusable.

This is great, but passing in the getGreeting function in each call still feels
cumbersome. We can change this by changing the greet function to both accept a
function, and return a function. Let's take a look at how that appears:

Example06.ts

1 function greet(getGreeting: (name: string) => string) {
2 return function(name: string) {
3 const greeting = getGreeting(name);
4 console.log(`${greeting} ${name}`);
5 };
6 }

Link to this example: https://packt.link/8nHeD

You'll notice that the logic stays the same as in the previous solution, but we split up
the function to first take in the getGreeting function, and then return another
function that takes in the name argument. This allows us to call greet like so:

const greetWithTime = greet(getGreeting);

greetWithTime('John'); // prints 'Good morning John' if it's morning

greetWithTime('Doug'); // prints 'Good morning Doug' if it's morning

https://packt.link/xSYDF
https://packt.link/8nHeD

422 | Higher-Order Functions and Callbacks

Splitting greet in this way allows us even more flexibility – since we now only need
the getGreeting function once we can inline it, if it doesn't make sense to use
it elsewhere:
8 const greetWithTime = greet(function(name: string) {
9 const hours = new Date().getHours();
10 if (hours < 12) {
11 return 'Good morning';
12 }
13
14 if (hours === 12) {
15 return 'Good noon';
16 }
17
18 if (hours < 18) {
19 return 'Good afternoon';
20 }
21
22 return 'Good night';
23 });

We could also use it to greet an array of people (names), using the forEach method
of Array:

const names = ['John', 'Jane', 'Doug', 'Sally'];

names.forEach(greetWithTime);

The following is the output:

Good afternoon John

Good afternoon Jane

Good afternoon Doug

Good afternoon Sally

Higher-order functions, especially ones that accept other functions, are very
widespread and useful, especially for manipulating datasets. We've even used them in
previous chapters. For instance, the map, filter, reduce, and forEach methods
of Array accept functions as arguments.

Higher-Order Functions | 423

Exercise 11.01: Orchestrating Data Filtering and Manipulation Using Higher-

Order Functions

In this exercise, we get a list of students and want to get the average score of
the students who graduated in 2010. This exercise will make use of higher-order
functions to complete this task.

The list of students is given in the following form:

interface Student {

 id: number;

 firstName: string;

 lastName: string;

 graduationYear: number;

 score: number;

}

const students: Student[] = [

 { id: 1, firstName: 'Carma', lastName: 'Atwel', graduationYear: 2010,
score: 88 },
 { id: 2, firstName: 'Shaun', lastName: 'Knoller', graduationYear: 2011,
score: 84 },
 // ...

];

Note

You can refer to the following starter file to get the code for student
interface: https://packt.link/6Jmeu.

https://packt.link/6Jmeu

424 | Higher-Order Functions and Callbacks

Perform the following steps to implement this exercise:

Note

The code file for this exercise can be found here:
https://packt.link/fm3O4. Make sure to begin with the code for the student
interface, as mentioned previously.

1. Create a function, getAverageScore, that will accept a Student[]
argument, and return a number:

function getAverageScoreOf2010Students(students: Student[]): number {

 // TODO: implement

}

2. First, we want to get only those students who graduated in 2010. We can use
the array's filter method for that – a higher-order function that accepts a
predicate, a function that accepts an item from the array and returns true
or false, depending on whether the item should be included in the result.
filter returns a new array comprising some of the original array items,
depending on the predicate. The length of the new array is smaller or equal to
the length of the original array.

3. Update your function with the following code:

function getAverageScoreOf2010Students(students: Student[]): number {

 const relevantStudents = students.filter(student => student.
graduationYear === 2010);
}

Next, we only care about the score of each student. We can use the array's map
method for that – a higher-order function that accepts a mapping function, a
function that accepts an item from the array and returns a new, transformed
value (of a type of your choosing) for each item. map returns a new array
comprising the transformed items.

https://packt.link/fm3O4

Higher-Order Functions | 425

4. Use the map method as shown:

function getAverageScoreOf2010Students(students: Student[]): number {

 const relevantStudents = students.filter(student => student.
graduationYear === 2010);
 const relevantStudentsScores = relevantStudents.map(student =>
student.score);
}

Lastly, we want to get the average from the array of scores. We can use the
array's reduce method for that – a higher-order function that accepts a reducer
function and an initial value.

5. Update the function with the reduce method as shown:

function getAverageScoreOf2010Students(students: Student[]): number {

 const relevantStudents = students.filter(student => student.
graduationYear === 2010);
 const relevantStudentsScores = relevantStudents.map(student =>
student.score);
 const relevantStudentsTotalScore = relevantStudentsScores.
reduce((acc, item) => acc + item, 0);

 return relevantStudentsTotalScore / relevantStudentsScores.length;

}

The reducer function accepts the accumulator and the current value and returns
an accumulator. reduce iterates over the items in the array, calling the reducer
function in each iteration with the current item and the previously returned
accumulator (or the initial value, for the first run). Finally, it returns the resulting
accumulator, after iterating through the entire array. In this case, we want to
average out the numbers in the array, so our reducer function will sum all the
items, which we'll then divide by the number of female students. We can then
call the function with any dataset and get the average score.

6. Run the file using npx ts-node. You should see the following output on
your console:

The average score of students who graduated in 2010 is: 78.5

Note

In this exercise, we could also extract each function given to filter, map,
and reduce into a named, non-inlined function, if it made sense to use it
outside of this context; for example, if we wanted to test the filtering logic
outside of getAverageScoreOf2010Students.

426 | Higher-Order Functions and Callbacks

Callbacks
Callbacks are functions that we pass into other functions, which, in turn, will
be invoked when they are needed. For example, in the client, if you want to
listen to clicks on a specific DOM element, you attach an event handler via
addEventListener. The function you pass in is then called when clicks on that
element occur:

const btnElement = document.querySelector<HTMLButtonElement>('.
my-button');

function handleButtonClick(event: MouseEvent) {

 console.log('.my-button was clicked!');

}

btnElement.addEventListener('click', handleButtonClick);

In this example, handleButtonClick is a callback function given to
addEventListener. It will be called whenever someone clicks the
.my-button element.

Note

You can also inline the handleButtonClick function, but you won't be
able to call removeEventListener later, which is required in certain
cases, to avoid memory leaks.

On the server, callbacks are widely used. Even the most basic request handler in
Node.js' http module requires a callback function to be passed:

import http from 'http';

function requestHandler(req: http.IncomingMessage, res: http.
ServerResponse) {
 res.write('Hello from request handler');

 res.end();

}

http

 .createServer(requestHandler)

 .listen(3000);

The Event Loop | 427

In this example, requestHandler is a callback function given to createServer.
It will be called whenever a request reaches the server, and this is where we define
what we want to do with it, and how we want to respond.

The Event Loop
Since JavaScript is single-threaded, callbacks are required to keep the main thread
free – the basic idea is that you give the engine a function to call when something
happens, where you can handle it, and then return the control to whatever other
code needs to run.

Note

In more recent versions of browsers and Node.js, you can create threads
via Web Workers on the browser or via Worker Threads in Node.js. However,
these are usually saved for CPU-intensive tasks, and they are not as easy
to use as callbacks or other alternatives are (for example, Promises –
explored in more detail in Chapter 13, Async Await in TypeScript).

To illustrate this, let's look at a version of some JavaScript code where there are no
callbacks, and we want to create a simple server that greets the users by their name:

// server.ts

function logWithTime(message: string) {

 console.log(`[${new Date().toISOString()}]: ${message}`);

}

http

 .createServer((req, res) => {

 logWithTime(`START: ${req.url}`);

 const name = req.url!.split('/')[1]!;

 const greeting = fetchGreeting(name);

 res.write(greeting);

 res.end();

428 | Higher-Order Functions and Callbacks

 logWithTime(`END: ${req.url}`);

 })

 .listen(3000);

fetchGreeting is faking a network operation, which is done synchronously to
illustrate the issue:

function fetchGreeting(name: string) {

 const now = Date.now();

 const fakeRequestTime = 5000;

 logWithTime(`START: fetchGreeting for user: ${name}`);

 while (Date.now() < now + fakeRequestTime);

 logWithTime(`END: fetchGreeting for user: ${name}`);

 return `Hello ${name}`;

}

In a more real-world example, fetchGreening could be replaced by a call to get
the user's data from the database.

If we run the server and try to request a few greetings simultaneously, you'll notice
that they each wait for the previous request to complete before starting requesting
the data for the current one. We can simulate a few concurrent requests by calling
fetch multiple times, without waiting for the previous request to finish first:

// client.ts

fetch('http://localhost:3000/john');

fetch('http://localhost:3000/jane');

The Event Loop | 429

The output you'll see on the server's console is this:

Figure 11.2: Output of running the sync server while making multiple
requests simultaneously

As you can see, Jane had to wait for John's request to finish (5 seconds in this case)
before the server even started handling her request. The total time to greet both
users was 10 seconds. Can you imagine what would happen in a real server, serving
hundreds or more requests at the same time?

Let's see how callbacks solve this.

We first change fetchGreeting to use callback APIs – setTimeout in this case
serves the same purpose as the while loop from before, while not holding up the
main thread:

function fetchGreeting(name: string, cb: (greeting: string) => void) {

 const fakeRequestTime = 5000;

 logWithTime(`START: fetchGreeting for user: ${name}`);

 setTimeout(() => {

 logWithTime(`fetched greeting for user: ${name}`);

 cb(`Hello ${name}`);

 }, fakeRequestTime);

 logWithTime(`END: fetchGreeting for user: ${name}`);

}

430 | Higher-Order Functions and Callbacks

Then, change the request handler to use the new implementation:

// server.ts

http

 .createServer((req, res) => {

 logWithTime(`START: ${req.url}`);

 const name = req.url!.split('/')[1]!;

 fetchGreeting(name, greeting => {

 logWithTime(`START: callback for ${name}`);

 res.write(greeting);

 res.end();

 logWithTime(`END: callback for ${name}`);

 });

 logWithTime(`END: ${req.url}`);

 })

 .listen(3000);

And run the client code again. This results in the following output:

Figure 11.3: Output of running the async server while making
multiple requests simultaneously

The Event Loop | 431

As you can see, the server started handing John's request first, since that's the first
one to arrive, but then immediately switched to handling Jane's request while waiting
for John's greeting to be ready. When John's greeting was ready 5 seconds later, the
server sent the greeting back, and then waited for Jane's greeting to be ready a few
milliseconds later and sent that to her.

To conclude, the same flow as before now took 5 seconds to respond to both users
instead of the 10 seconds from before. In addition, most of that time was spent idle
– waiting to receive more requests to handle. This is instead of the flow prior to the
callbacks, where the server was stuck and wasn't able to answer any requests for the
majority of the time.

Callbacks in Node.js

Since callbacks are very common in Node.js, and especially since the whole ecosystem
relies on using external packages for a lot of things, there is a standard callback API
structure for any async function:

1. The callback function will be the last parameter.

2. The callback function will take err as the first parameter, which may be null
(or undefined), and the response data as the second parameter.

Further parameters are also allowed, but these two are mandatory. This results in a
predictable structure for handling callbacks, illustrated by the following example for
reading a file from the filesystem:

import fs from "fs";

fs.readFile("some-file", (err, file) => {

 if (err) {

 // handle error...

 return;

 }

 // handle file...

});

432 | Higher-Order Functions and Callbacks

Callback Hell

Unfortunately, code that uses callbacks can make it very hard to follow, understand,
and reason about very quickly. Every async operation requires another callback level,
and if you want to run multiple async operations consecutively, you have to nest
these callbacks.

For example, let's say we want to build a social network, which has an endpoint where
you can ask for a given user's friends, based on their username. Getting this list of
friends requires multiple operations, each requiring an async operation that depends
on the result of the previous one:

1. Get the requested user's ID from the database (given their username).

2. Get the privacy settings of the user to make sure they allow others to view their
list of friends.

3. Get the user's friends (from an external service or otherwise).

Here is some example code for how this could be done, using callbacks. We're using
express here to set up a basic server, listening on port 3000. The server can accept
a GET request to /:username/friends (where :username will be replaced with
the actual requested username). After accepting the request, we get the ID of the
user from the database, then get the user privacy preferences using the user's ID (this
can be in an external service, or otherwise) to check that they allow others to view
their friends' list, then get the user's friends, and finally return the result:

import express from 'express';

import request from 'request';

import sqlite from 'sqlite3';

const db = new sqlite.Database('db.sql', err => {

 if (err) {

 console.error('Error opening database:', err.message);

 }

});

const app = express();

app.get('/:username/friends', (req, res) => {

 const username = req.params.username;

 db.get(

The Event Loop | 433

 `SELECT id

 FROM users

 WHERE username = username`,

 [username],

 (err, row) => {

 if (err) {

 return res.status(500).end();

 }

 getUserPrivacyPreferences(row.id, (err, privacyPreferences) => {

 if (err) {

 return res.status(500).end();

 }

 if (!privacyPreferences.canOthersViewFriends) {

 return res.status(403).end();

 }

 getFriends(row.id, (err, friends) => {

 if (err) {

 return res.status(500).end();

 }

 return res

 .status(200)

 .send({ friends })

 .end();

 });

 });

 }

);

});

app.get('*', (req, res) => {

 res.sendFile('index.html');

});

app.listen(3000);

434 | Higher-Order Functions and Callbacks

Also note that in each callback, we got an err parameter and had to check whether it
was true, and bail early if it wasn't accompanied by an appropriate error code.

The preceding example is not unrealistic, and a lot of cases require more levels than
this to get all the data they need in order to perform a task. And so, this "callback hell"
becomes more apparent, and harder to understand and reason about very quickly,
since, as discussed previously, a lot of APIs in Node.js work with callbacks, due to the
nature of how JavaScript works, as explained in the event loop section.

Avoiding Callback Hell

There are quite a few solutions to the callback hell problem. We'll take a look at the
most prominent ones, demonstrating how the preceding code snippet would look in
each variation:

1. Extract the callback functions to function declarations at the file level and then
use them – this means you only have one level of functions with business logic,
and the callback hell functions become a lot shorter.

2. Use a higher-order function to chain the callbacks, meaning only a single level of
callbacks in practice.

3. Use promises, when can be chained together, as explained in Chapter 13, Async
Await in TypeScript.

4. Use async/await (which is syntactic sugar on top of Promise), as explained in
Chapter 13, Async Await in TypeScript.

Splitting the Callback Handlers into Function Declarations at the File Level

The simplest way to simplify callback hell is to extract some of the callbacks into their
own top-level functions and let each one call the next in the logical chain.

Our main endpoint handler will call the get of db as before, but then just call
handleDatabaseResponse with the response, leaving it to handle any errors, and
so on. This is why we also pass in the response object to the function, in case it needs
to return the data, or an error, to the user:

app.get('/:username/friends', (req, res) => {

 const username = req.params.username;

 db.get(

 `SELECT id

 FROM users

The Event Loop | 435

 WHERE username = username`,

 [username],

 (err, row) => {

 handleDatabaseResponse(res, err, row);

 }

);

});

The handleDatabaseResponse function will perform the same logic as before,
but now pass the handling of the getUserPrivacyPreferences response to
handleGetUserPrivacyPreferences:

function handleDatabaseResponse(res: express.Response, err: any, row: {
id: string }) {
 if (err) {

 return res.status(500).end();

 }

 getUserPrivacyPreferences(row.id, (err, privacyPreferences) => {

 handleGetUserPrivacyPreferences(res, row.id, err,
privacyPreferences);
 });

}

handleGetUserPrivacyPreferences will again perform the same
logic as before, and pass the handling of the getFriends response to
handleGetFriends:

function handleGetUserPrivacyPreferences(

 res: express.Response,

 userId: string,

 err: any,

 privacyPreferences: PrivacyPreferences

) {

 if (err) {

 return res.status(500).end();

 }

 if (!privacyPreferences.canOthersViewFriends) {

 return res.status(403).end();

436 | Higher-Order Functions and Callbacks

 }

 getFriends(userId, (err, friends) => handleGetFriends(res, err,
friends));
}

And finally, handleGetFriends will return the data to the user via the response:

function handleGetFriends(res: express.Response, err: any, friends:
any[]) {
 if (err) {

 return res.status(500).end();

 }

 return res

 .status(200)

 .send({ friends })

 .end();

}

Now we only have a single nesting level, and no more callback hell.

The main trade-off here is that while the code is less nested, it is split among multiple
functions and may be harder to follow, especially when debugging or skimming
through it to understand what's going on at a high level.

Chaining Callbacks

There are libraries to help us eliminate the callback hell problem by chaining the
callbacks to one another – artificially removing nesting levels from our code. One
of the popular ones is async.js (https://github.com/caolan/async), which exposes a
few functions to compose callback functions, such as parallel, series, and
waterfall. In our preceding code example, we could use the waterfall function
to chain the callbacks to happen one after the other:

1. We implement an array of functions, and a final handler. async will then
call our functions, one by one, when we call the callback in each function, as
demonstrated here:

...

import async from 'async';

...

https://github.com/caolan/async

The Event Loop | 437

type CallbackFn = <T extends any[]>(err: any, ...data: T) => void;

class ServerError extends Error {

 constructor(public readonly statusCode: number, message?: string) {

 super(message);

 }

}

app.get('/:username/friends', (req, res) => {

 const username = req.params.username;

2. Get the user ID from the database:

 async.waterfall(

 [

 // 1. Get the user id from the database

 (cb: CallbackFn) => {

 db.get(

 `SELECT id

 FROM users

 WHERE username = username`,

 [username],

 (err, row) => {

 if (err) {

 return cb(err);

 }

 return cb(null, row);

 }

);

 },

438 | Higher-Order Functions and Callbacks

3. Get the user's privacy settings:

 (row: { id: string }, cb: CallbackFn) => {

 getUserPrivacyPreferences(row.id, (err, privacyPreferences)
=> {
 if (err) {

 return cb(err);

 }

 return cb(null, privacyPreferences, row.id);

 });

 },

4. Check that the user privacy settings allow others to view their friends:

 (privacyPreferences: PrivacyPreferences, userId: string, cb:
CallbackFn) => {
 if (!privacyPreferences.canOthersViewFriends) {

 return cb(new ServerError(403, "User doesn't allow others
to view their friends"));
 }

 return cb(null, userId);

 },

5. Get the user's friends:

 (userId: string, cb: CallbackFn) => {

 getFriends(userId, (err, friends) => {

 if (err) {

 return cb(err);

 }

 return cb(null, friends);

 });

 },

],

6. Finally, handle any errors that occurred, or the data that was returned from the
last callback:

 (error, friends) => {

 if (error) {

 if (error instanceof ServerError) {

 return res

The Event Loop | 439

 .status(error.statusCode)

 .send({ message: error.message })

 .end();

 }

 return res.status(500).end();

 }

 return res

 .status(200)

 .send({ friends })

 .end();

 }

);

});

Now the code is much easier to follow – we only have one error handler that's tied
down to the response object, and we follow the code from top to bottom, with not
much nesting in between, at least not due to callbacks.

Promises

Promises allow you to essentially flatten the callback tree by doing something similar
to async.js' waterfall, but it's more seamless, built into the language itself, and also
allows promises to be "squashed."

We won't go into too much detail here – refer to Chapter 13, Async Await in TypeScript
for an in-depth explanation of promises, but the preceding code, using promises,
would look like this:

...

app.get('/:username/friends', (req, res) => {

 const username = req.params.username;

 promisify<string, string[], { id: string }>(db.get)(

 `SELECT id

 FROM users

 WHERE username = username`,

 [username]

)

 .then(row => {

440 | Higher-Order Functions and Callbacks

 return getUserPrivacyPreferences(row.id).then(privacyPreferences =>
{
 if (!privacyPreferences.canOthersViewFriends) {

 throw new ServerError(403, "User doesn't allow others to view
their friends");
 }

 return row.id;

 });

 })

 .then(userId => {

 return getFriends(userId);

 })

 .then(friends => {

 return res

 .status(200)

 .send({ friends })

 .end();

 })

 .catch(error => {

 if (error instanceof ServerError) {

 return res

 .status(error.statusCode)

 .send({ message: error.message })

 .end();

 }

 return res.status(500).end();

 });

});

async/await

Async/await builds upon promises and provides further syntactic sugar on top of
them in order to make promises look and read like synchronous code, even though,
behind the scenes, it's still async. You can get a more in-depth explanation of them
in Chapter 13, Async Await in TypeScript, but the preceding code that used promises is
equivalent to the following code that uses async/await:

...

app.get('/:username/friends', async (req, res) => {

The Event Loop | 441

 const username = req.params.username;

 try {

 const row = await promisify<string, string[], { id: string }>(db.get)
(
 `SELECT id

 FROM users

 WHERE username = username`,

 [username]

);

 const privacyPreferences = await getUserPrivacyPreferences(row.id);

 if (!privacyPreferences.canOthersViewFriends) {

 throw new ServerError(403, "User doesn't allow others to view their
friends");
 }

 const friends = await getFriends(row.id);

 return res

 .status(200)

 .send({ friends })

 .end();

 } catch (error) {

 if (error instanceof ServerError) {

 return res

 .status(error.statusCode)

 .send({ message: error.message })

 .end();

 }

 return res.status(500).end();

 }

});

442 | Higher-Order Functions and Callbacks

Activity 11.01: Higher-Order Pipe Function

In this activity, you are tasked with implementing a pipe function – a higher-
order function that accepts other functions, as well as a value, and composes
them – returning a function that accepts the arguments of the first function in the
composition, runs it through the functions – feeding each function with the output of
the previous one (and the first function with the initial value), and returns the result
of the last function.

Such functions exist in utility libraries such as Ramda (https://ramdajs.com/docs/#pipe).
and with variations in other libraries such as Lodash (https://lodash.com/docs#chain)
and RxJS (https://rxjs.dev/api/index/function/pipe).

Note

You can find both the activity starter file and solution at
https://packt.link/CQLfx.

Perform the following steps to implement this activity:

1. Create a pipe function that accepts functions as arguments and composes
them, from left to right.

2. Make sure that the return type of the returned functional is correct – it should
accept arguments of type T, T being the arguments of the first function in the
chain, and return type R, R being the return type of the last function in the chain.

Note that due to a current TypeScript limitation, you have to manually type this
for the number of arguments you want to support.

3. Your pipe function should be callable in multiple ways – supporting
composition of up to five functions, and will only support composing functions
with a single argument, for simplicity.

Here is the structure of the pipe function that you can use:

const func = pipe(

 (x: string) => x.toUpperCase(),

 x => [x, x].join(','),

 x => x.length,

 x => x.toString(),

https://ramdajs.com/docs/#pipe
https://lodash.com/docs#chain
https://rxjs.dev/api/index/function/pipe
https://packt.link/CQLfx

Summary | 443

 x => Number(x),

);

console.log('result is:', func('hello'));

After solving the preceding steps, the expected output for this code is presented here:

result is: 11

Bonus: As a challenge, try expanding the pipe function to support the composition
of more functions, or more arguments.

Note

The solution to this activity can be found via this link.

Summary
In this chapter, we introduced two key concepts in TypeScript – higher-order functions
and callbacks. The chapter first defined HOCs and illustrated this concept with a
number of examples. You also orchestrated data filtering and manipulation using
higher-order functions. Finally, you also tested your skills by creating a higher-order
pipe function.

With regard to callbacks, the chapter first introduced the definition of callbacks with a
few generic examples, along with examples relating to callbacks in Node.js. You also
saw how you can easily fall into callback hell and how you can avoid it. Although there
are several additional steps that you need to take in order to master higher-order
functions and callback, this chapter got you started on the journey. The next chapter
deals with another important concept in TypeScript – promises.

Overview

This chapter explores asynchronous programming in TypeScript using
promises and discusses uses for asynchronous programming and how it
is implemented in single-threaded JavaScript with the event loop. By the
end of the chapter, you should have a solid understanding of how promises
work and how TypeScript can enhance them. You will also be able to build a
promise-based app using the concepts taught in this chapter.

Guide to Promises in

TypeScript

12

446 | Guide to Promises in TypeScript

Introduction
In the previous chapter, we learned about asynchronous programming using
callbacks. With this knowledge, we can manage concurrent requests and write
non-blocking code that allows our applications to render web pages faster or serve
concurrent requests on a Node.js server.

In this chapter, we will learn how promises allow us to write more readable, concise
code to better manage asynchronous processes and forever escape deep callback
nesting, sometimes known as "callback hell." We will explore the evolution of the
Promise object and how it eventually became part of the JavaScript language. We'll
look at different transpilation targets for TypeScript and how TypeScript can enhance
promises and allow developers to leverage generics to infer return types.

We will work on some practical exercises, such as managing multiple API requests
from a website and managing concurrency in Node.js. We will use the Node.js
FileSystem API to perform asynchronous operations on files and see how powerful
asynchronous programming can be.

The Evolution of and Motivation for Promises
As we've learned, a callback is a function that is given as an argument to another
function, in effect saying, "do this when you are done." This capability has been in
JavaScript since its inception in 1995 and can work very well, but as the complexity of
JavaScript applications grew through the 2000s, developers found callback patterns
and nesting in particular to be too messy and unreadable, giving rise to complaints
about "callback hell" as shown in the following example:

doSomething(function (err, data) {

 if(err) {

 console.error(err);

 } else {

 request(data.url, function (err, response) {

 if(err) {

 console.error(err);

 } else {

 doSomethingElse(response, function (err, data) {

 if(err) {

 console.error(err);

 } else {

The Evolution of and Motivation for Promises | 447

 // ...and so it goes!

 }

 })

 }

 })

 }

});

In addition to making code more readable and concise, promises have advantages
beyond callbacks in that promises are objects that contain the state of the resolving
asynchronous function. This means that a promise can be stored and either queried
for the current state or called via its then() or catch() methods at any time to
obtain the resolved state of the promise. We'll discuss those methods later in this
chapter, but it's worth calling out at the beginning here that promises are more than
syntactic sugar. They open up entirely new programming paradigms in which event
handling logic can be decoupled from the event itself, just by storing the event in
a promise.

Promises are not unique to JavaScript but were first proposed as a computer
programming concept in the 1970s.

Note

For more information, refer to Friedman, Daniel; David Wise (1976).
The Impact of Applicative Programming on Multiprocessing. International
Conference on Parallel Processing. pp. 263–272.

As web frameworks gained popularity, proposals for promises started to appear in
2009 and libraries such as jQuery started implementing promise-like objects in 2011.

Note

For more information, refer to the following: https://groups.google.com/g/
commonjs/c/6T9z75fohDk and https://api.jquery.com/category/version/1.5/

https://groups.google.com/g/commonjs/c/6T9z75fohDk
https://groups.google.com/g/commonjs/c/6T9z75fohDk
https://api.jquery.com/category/version/1.5/

448 | Guide to Promises in TypeScript

It wasn't long before Node.js started to have some promise libraries as well. Google's
AngularJS bundled the Q library. All of these libraries wrapped callbacks in a higher-
level API that appealed to developers and helped them to write cleaner and more
readable code.

In 2012, promises were proposed as an official specification in order to standardize
the API. The specification was accepted in 2015 and has since been implemented in
all major browsers as well as Node.js.

Note

For more details, refer to http://www.ecma-international.org/ecma-
262/6.0/#sec-promise-constructor.

"Promisification," the ability to wrap an existing asynchronous function in a promise,
was added to many libraries and became part of the util package in the standard
Node.js library as of version 8.0 (released in 2017).

TypeScript, as a superset of JavaScript, will always support native language features
such as promises; however, TypeScript does not provide polyfills, so if the target
environment doesn't support native promises, a library is required.

Most JavaScript runtimes (such as a web browser or Node.js server) are single-
threaded execution environments. That means the main JavaScript process will
only do one thing at a time. Thanks to the event loop, the runtime will seem like it's
capable of doing many things at once as long as we write non-blocking code. The
event loop recognizes asynchronous events and can turn to other tasks while it waits
for those events to resolve.

Consider the example of a web page that needs to call an API to load data into a
table. If that API call were blocking, then that would mean the page render couldn't
complete until the data loaded. Our user would have to stare at a blank page until all
the data loaded and page elements rendered. But because of the event loop, we can
register a listener that allows rendering of the website to continue and then load the
table when our data is finally returned. This is visualized in the following figure:

http://www.ecma-international.org/ecma-262/6.0/#sec-promise-constructor
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-constructor

The Evolution of and Motivation for Promises | 449

Figure 12.1: A typical event loop

This can be implemented using callbacks or promises. The event loop is what makes
this possible. Node.js works similarly, but now we may be responding to requests
from a multitude of clients. In this simple example, three different requests are
being made:

Figure 12.2: Multiple requests

450 | Guide to Promises in TypeScript

The API is not blocking so additional requests can come in even when the initial one
has not been served. The requests are served in the order the work is completed.

Anatomy of a Promise
A promise is a JavaScript object that can exist in three states: pending, fulfilled, or
rejected. Although promises can be instantly fulfilled or rejected, it is most typical for a
promise to be created in a pending state and then resolved to be fulfilled or rejected
as an operation succeeds or fails. Promises are chainable and implement several
convenience methods that we'll go into.

To understand the states of a promise better, it's important to know that the states
of a promise cannot be queried. As a programmer, we do not check the state of the
promise and take action based on that state. Rather we provide a function callback
that will be invoked when the promise reaches that state. For example, we make an
HTTP request to our backend server and get a promise in response. Now we have
set up our event and we merely need to tell the promise what to do next and how to
handle any errors. Examples of this will follow.

The Promise Callback

A promise can be instantiated using the new keyword and Promise constructor.
When instantiated in this way, Promise expects a callback argument that contains
the actual work to be done. The callback has two arguments of its own, resolve
and reject. These arguments can be called explicitly to either resolve or reject the
promise. For example, we can create a promise that resolves after 100 ms like this:

new Promise<void>((resolve, reject) => {

 setTimeout(() => resolve(), 100);

});

We could also create a promise that rejects after 100 ms:

new Promise<void>((resolve, reject) => {

 setTimeout(() => reject(), 100);

});

Anatomy of a Promise | 451

then and catch

Promises can be chained into callback functions of their own using then and catch.
The callback function given to then will fire only once the promise is fulfilled and the
callback function given to catch will only fire if the promise is rejected. Most libraries
that return promises will automatically call resolve and reject, so we only need
to provide then and catch. Here's an example using the Fetch API:

fetch("https://my-server.com/my-resource")

 .then(value => console.log(value))

 .catch(error => console.error(error));

This code will make a call to our backend server and log out the result. If the call fails,
it'll log that too.

If this were a real application, we might have a couple of functions, showData and
handleError, that could manage what our application does with the response
from the server. In that case, the use of fetch would likely be something like this:

fetch("https://my-server.com/my-resource")

 .then(data => showData(data))

 .catch(error => handleError(error));

Using promises like this shows how we can decouple our asynchronous processes
from business logic and display elements.

Pending State

A pending promise is one that has yet to complete its work. It's simple to create a
promise that is forever stuck in a pending state:

const pendingPromise = new Promise((resolve, reject) => {});

console.log(pendingPromise);

This promise will never do anything as neither resolve nor reject are ever
called. The promise will remain in a pending state. If we execute this code, it'll print
out Promise { <pending> }. As noted above, we do not query the state of a
promise but rather provide a callback for the eventual resolution of a promise. The
sample code above contains a promise that can never be resolved and as such could
be seen as invalid code. There is no use case for promises that cannot resolve.

452 | Guide to Promises in TypeScript

Fulfilled State

We can create a promise that is fulfilled immediately:

const fulfilledPromise = new Promise(resolve => {

 resolve("fulfilled!");

});

console.log(fulfilledPromise);

This will log out Promise { 'fulfilled!' }.

Unlike the pending state, creating a promise that resolves immediately has a few
more practical use cases. The primary use of an immediately resolved promise would
be when working with an API that expects a promise.

Rejected State

We can create a promise that is fulfilled immediately:

const rejectedPromise = new Promise((resolve, reject) => {

 reject("rejected!");

});

console.log(rejectedPromise);

This will log out Promise { <rejected> 'rejected!' } and then throw an
unhandled promise rejection warning. Rejected promises always need to be caught.
Failure to catch a promise rejection may cause our program to crash!

As with the fulfilled state, the primary use case for immediately rejecting a promise
would be for writing a good unit test, but there may be secondary use cases in which
some process throws an error during an asynchronous workflow and it may make
sense to return a rejected promise. This circumstance would be most likely when
working with a third-party library where the API isn't quite to our liking and we need
to wrap it with something more in line with the rest of our application architecture.

Anatomy of a Promise | 453

Chaining

One of the main advantages of promises over callbacks is the ability to chain
promises together. Consider a function that waits 1 second, generates a random
number between 0 and 99, and adds it to the previous result. There are better ways
to write recursive functions, but this is meant to simulate a website making several
calls to a backend:

Example01.ts

1 const getTheValue = async (val: number, cb: Function) => {
2 setTimeout(() => {
3 const number = Math.floor(Math.random() * 100) + val;
4 console.log(`The value is ${number}`);
5 cb(number);
6 }, 1000);
7 };
8
9 getTheValue(0, (output: number) => {
10 getTheValue(output, (output: number) => {
11 getTheValue(output, (output: number) => {
12 getTheValue(output, (output: number) => {
13 getTheValue(output, (output: number) => {
14 getTheValue(output, (output: number) => {
15 getTheValue(output, (output: number) => {
16 getTheValue(output, (output: number) => {
17 getTheValue(output, (output: number) => {
18 getTheValue(output, () => {});
19 });
20 });
21 });
22 });
23 });
24 });
25 });
26 });
27 });

Link to the example: https://packt.link/VHZJc

https://packt.link/VHZJc

454 | Guide to Promises in TypeScript

A sample output of this program is the following:

The value is 49

The value is 133

The value is 206

The value is 302

The value is 395

The value is 444

The value is 469

The value is 485

The value is 528

The value is 615

Each time we call getTheValue, we wait 1 second, then generate a random number
and add it to the value we passed in. In a real-world scenario, we can think of this as
a program that completes several asynchronous tasks, using the output from the last
one as input to the next.

Note

As the starting point of the program is a random number, your output would
be different from the one presented above.

Everything in the previous program works correctly; however, the callback nesting
isn't very nice to look at and could be challenging to maintain or debug. The next
exercise will teach you how you can write more readable and maintainable code
using promises.

Exercise 12.01: Chaining Promises

In this exercise, we will refactor the preceding example and chain promises to
eliminate nesting and make the code more readable:

Note

The code file for this exercise can be found here: https://packt.link/IO8Pz.

https://packt.link/IO8Pz

Anatomy of a Promise | 455

1. Write the following program, which refactors the previous example
using promises:

const getTheValue = async (val: number): Promise<number> => {

 return new Promise(resolve => {

 setTimeout(() => {

 const number = Math.floor(Math.random() * 100) + val;

 console.log(`The value is ${number}`);

 resolve(number);

 }, 1000);

 });

};

getTheValue(0)

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result))

 .then((result: number) => getTheValue(result));

The nesting is gone and the code is a lot more readable. Our getTheValue
function now returns a promise instead of using a callback. Because it returns
a promise, we can call .then() on the promise, which can be chained into
another promise call.

2. Run the program. The chain of promises will resolve each in turn and we'll get
similar output to the previous program:

The value is 50

The value is 140

The value is 203

The value is 234

The value is 255

The value is 300

The value is 355

The value is 395

The value is 432

The value is 451

456 | Guide to Promises in TypeScript

Note that you will get an output that is different from the one shown above
because the program uses a random number as the starting point.

Chaining can also be a big help when it comes to error conditions. If my
getTheValue function rejects the promise, I'm able to catch the error by chaining a
single catch to the end of the chain:

Example02.ts

1 const getTheValue = async (val: number): Promise<number> => {
2 return new Promise((resolve, reject) => {
3 setTimeout(() => {
4 const number = Math.floor(Math.random() * 100) + val;
5 if (number % 10 === 0) {
6 reject("Bad modulus!");
7 } else {
8 console.log(`The value is ${number}`);
9 resolve(number);
10 }
11 }, 1000);
12 });
13 };
14
15 getTheValue(0)
16 .then((result: number) => getTheValue(result))
17 .then((result: number) => getTheValue(result))
18 .then((result: number) => getTheValue(result))
19 .then((result: number) => getTheValue(result))
20 .then((result: number) => getTheValue(result))
21 .then((result: number) => getTheValue(result))
22 .then((result: number) => getTheValue(result))
23 .then((result: number) => getTheValue(result))
24 .then((result: number) => getTheValue(result))
25 .catch(err => console.error(err));

Link to the example: https://packt.link/sBTgk

We are introducing a 10% chance (the chance our number when divided by 10 will
have a remainder of 0) of throwing an error on each iteration. On average, our
program will fail more often than it executes successfully now:

The value is 25

The value is 63

The value is 111

Bad modulus!

https://packt.link/sBTgk

Anatomy of a Promise | 457

finally

In addition to then and catch methods, the Promise object also exposes a
finally method. This is a callback function that will be called regardless of whether
an error is thrown or caught. It's great for logging, closing a database connection, or
simply cleaning up resources, regardless of how the promise is eventually resolved.

We can add a finally callback to the above promise:

Example03.ts

1 const getTheValue = async (val: number) => {
2 return new Promise<number>((resolve, reject) => {
3 setTimeout(() => {
4 const number = Math.floor(Math.random() * 100) + val;
5 if (number % 10 === 0) {
6 reject("Bad modulus!");
7 } else {
8 console.log(`The value is ${number}`);
9 resolve(number);
10 }
11 }, 1000);
12 });
13 };
14
15 getTheValue(0)
16 .then(result => getTheValue(result))
17 .then(result => getTheValue(result))
18 .then(result => getTheValue(result))
19 .then(result => getTheValue(result))
20 .then(result => getTheValue(result))
21 .then(result => getTheValue(result))
22 .then(result => getTheValue(result))
23 .then(result => getTheValue(result))
24 .then(result => getTheValue(result))
25 .catch(err => console.error(err))
26 .finally(() => console.log("We are done!"));

Link to the example: https://packt.link/izqwS

Now "We are done!" will be logged regardless of whether or not we trip the
"Bad modulus!" error condition:

The value is 69

The value is 99

Bad modulus!

We are done!

https://packt.link/izqwS

458 | Guide to Promises in TypeScript

Promise.all

Promise.all is one of the most useful utility methods that Promise has to
offer. Even code written with async/await syntax (see Chapter 13, Async/Await) can
make good use of Promise.all. This method takes an iterable (likely an array) of
promises as an argument and resolves all of them. Let's see how we can change our
example promise using Promise.all:

Example04.ts

1 const getTheValue = async (val: number = 0) => {
2 return new Promise<number>((resolve, reject) => {
3 setTimeout(() => {
4 const number = Math.floor(Math.random() * 100) + val;
5 if (number % 10 === 0) {
6 reject("Bad modulus!");
7 } else {
8 console.log(`The value is ${number}`);
9 resolve(number);
10 }
11 }, 1000);
12 });
13 };
14
15 Promise.all([
16 getTheValue(),
17 getTheValue(),
18 getTheValue(),
19 getTheValue(),
20 getTheValue(),
21 getTheValue(),
22 getTheValue(),
23 getTheValue(),
24 getTheValue(),
25 getTheValue()
26])
27 .then(values =>
28 console.log(
29 `The total is ${values.reduce((prev, current) => prev + current, 0)}`
30)
31)
32 .catch(err => console.error(err))
33 .finally(() => console.log("We are done!"));

Link to the example: https://packt.link/8pzx4

The output should be similar to the ones obtained for the preceding examples. In
this example, we call the same function 10 times, but imagine these are 10 different
API calls we need to reach and then sum the total. Each call takes approximately 1
second. If we chain a series of promises, this operation will take just over 10 seconds.
By using Promise.all, we are able to run those operations in parallel and now it
takes only 1 second to complete the function.

https://packt.link/8pzx4

Anatomy of a Promise | 459

Promise.all is useful any time you can run two or more asynchronous processes
in parallel. It can be useful for persisting data to multiple database tables, letting
multiple independent components render in a web browser independently, or
making multiple HTTP requests. A good example of making multiple HTTP requests
in parallel would be a service that monitors the uptime and ping duration of other
services. There's no reason such an operation would need to be synchronous and
Promise.all lets us wait on several web requests within the same process.

Exercise 12.02: Recursive Promise.all

In this exercise, instead of repeating the same function call 10 times, let's optimize
the programs from the previous examples to be more DRY (don't repeat yourself).
We can load up an array of promises and then use Promise.all to resolve all the
promises in parallel and use catch and finally to resolve errors and ensure we
return some output:

Note

The code file for this exercise can also be found here:
https://packt.link/KNpqx.

1. The following code will be our starting place for this refactor:

const getTheValue = async (val: number = 0) => {

 return new Promise<number>((resolve, reject) => {

 setTimeout(() => {

 const number = Math.floor(Math.random() * 100) + val;

 if (number % 10 === 0) {

 reject('Bad modulus!');

 } else {

 console.log(`The value is ${number}`);

 resolve(number);

 }

 }, 1000);

 });

};

Promise.all([

 getTheValue(),

 getTheValue(),

https://packt.link/KNpqx

460 | Guide to Promises in TypeScript

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

])

 .then((values) =>

 console.log(

 `The total is ${values.reduce((prev, current) => prev +
current, 0)}`
)

)

 .catch((err) => console.error(err))

 .finally(() => console.log('We are done!'));

In order to catch errors and make the program recursive, we'll need to wrap
Promise.all in a function. Recursion is a pattern in which the same function
can be called multiple times within the same execution.

2. To add the recursion, create a new function and make the Promise.all
statement the body of that function. Then call the function:

const doIt = () => {

 Promise.all([

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

 getTheValue(),

])

 .then((values) =>

 console.log(

 `The total is ${values.reduce((prev, current) => prev +
current, 0)}`
)

Anatomy of a Promise | 461

)

 .catch((err) => console.error(err))

 .finally(() => console.log('We are done!'));

We can use some functional programming techniques to, rather than having
an array in which getTheValue() is repeated 10 times, programmatically
construct an array of 10 elements, all of which are that function call. Doing
this won't change how our program operates, but it will make it a bit nicer to
work with.

3. Update the code given in the preceding step with the following:

 Promise.all(

 Array(10)

 .fill(null)

 .map(() => getTheValue())

)

The logic here is that Array(10) creates a new array of 10 elements,
fill(null) will initialize the array, then map will remap the array elements to
be the getTheValue() function call.

Th above code actually calls the function and returns the pending promise to the
array that is already wrapped in Promise.all.

Now we want to use recursion in the case of an error. We will change our
catch() callback from simply logging the error to starting the process over
again. In this case, our business rule is we want the entire set of calculations to
complete and we will restart if there is an error. The code to do this is very easy
as catch() expects a function as its callback so we can just pass our doIt
function back to it again.

4. Pass the doIt function back to catch():

 .catch(doIt)

Note that we do not invoke the callback function here. We want to pass a
function and it will be invoked in the case of an error.

462 | Guide to Promises in TypeScript

5. We will now want to clean up our error messages a little so we can have a
clean run:

const getTheValue = async (val: number = 0) => {

 return new Promise<number>((resolve, reject) => {

 setTimeout(() => {

 const number = Math.floor(Math.random() * 100) + val;

 if (number % 10 === 0) {

 reject('Bad modulus!');

 } else {

 // console.log(`The value is ${number}`);

 resolve(number);

 }

 }, 1000);

 });

};

let loopCount = 0;

const doIt = () => {

 Promise.all(

 Array(10)

 .fill(null)

 .map(() => getTheValue())

)

 .then((values) =>

 console.log(

 `The total is ${values.reduce((prev, current) => prev +
current, 0)}`
)

)

 .catch(doIt)

 .finally(() => console.log(`completed loop ${++loopCount}`));

};

doIt();

Anatomy of a Promise | 463

When we run the program, we'll see a few iterations of the program looping.
The output may be something like this:

completed loop 1

The total is 438

completed loop 2

Note that depending on the number of iterations, you might get an output
different from the one shown above.

Promise.allSettled

This method is a variation on Promise.all, which is ideal for when it's acceptable
for some of our promises to resolve successfully and some of them to be rejected.
Let's see how it's different from Promise.all:

const getTheValue = async (val: number = 0) => {

 return new Promise<number>((resolve, reject) => {

 setTimeout(() => {

 const number = Math.floor(Math.random() * 100) + val;

 // Arbitrary error condition - if the random number is divisible by
10.
 if (number % 10 === 0) {

 reject("Bad modulus!");

 } else {

 console.log(`The value is ${number}`);

 resolve(number);

 }

 }, 1000);

 });

};

const generateTheNumber = (iterations: number): void => {

 Promise.allSettled(

 // Produces an array of `iterations` length with the pending promises
of `getTheValue()`.
 Array(iterations)

 .fill(null)

 .map(() => getTheValue())

)

 .then((settledResults) => {

 // Map all the results into the failed, succeeded and total values.

 const results = settledResults.reduce(

464 | Guide to Promises in TypeScript

 (prev, current) => {

 return current.status === "fulfilled"

 ? {

 ...prev,

 succeeded: prev.succeeded + 1,

 total: prev.total + current.value,

 }

 : { ...prev, failed: prev.failed + 1 };

 },

 {

 failed: 0,

 succeeded: 0,

 total: 0,

 }

);

 console.log(results);

 })

 .finally(() => console.log("We are done!"));

};

generateTheNumber(10);

The program will generate output like this:

current { status: 'fulfilled', value: 85 }

current { status: 'fulfilled', value: 25 }

current { status: 'fulfilled', value: 11 }

current { status: 'fulfilled', value: 43 }

current { status: 'rejected', reason: 'Bad modulus!' }

current { status: 'fulfilled', value: 41 }

current { status: 'fulfilled', value: 81 }

current { status: 'rejected', reason: 'Bad modulus!' }

current { status: 'rejected', reason: 'Bad modulus!' }

current { status: 'fulfilled', value: 7 }

{ failed: 3, succeeded: 7, total: 293 }

We are done!

Anatomy of a Promise | 465

We've made a couple of enhancements here. For one thing, we are now passing the
array size into generateTheNumber, which can give a bit more flavor or variation
to our program. The main improvement now is the use of Promise.allSettled.
Now, Promise.allSettled allows us to have a mix of successes and failures,
unlike Promise.all, which will call the then() method if all the promises resolve
successfully or call the catch() method if any of them fail. The output of Promise.
allSettled could look something like this:

settledResults [

 { status: 'fulfilled', value: 85 },

 { status: 'fulfilled', value: 25 },

 { status: 'fulfilled', value: 11 },

 { status: 'fulfilled', value: 43 },

 { status: 'rejected', reason: 'Bad modulus!' },

 { status: 'fulfilled', value: 41 },

 { status: 'fulfilled', value: 81 },

 { status: 'rejected', reason: 'Bad modulus!' },

 { status: 'rejected', reason: 'Bad modulus!' },

 { status: 'fulfilled', value: 7 }

]

Each of the resolved promises will have a status containing the string 'fulfilled'
if the promise resolved successfully or 'rejected' if there was an error. Fulfilled
promises will have a value property containing the value the promise resolved to
and rejected promises will have a reason property containing the error.

In the example given, we are totaling the rejected promises and summing the
values of the fulfilled promises, then returning that as a new object. To perform this
operation, we use the built-in array function reduce(). Now, reduce() will iterate
over each element of an array and collect transformed results in an accumulator,
which is returned by the function. MapReduce functions are common in functional
programming paradigms.

Note that Promise.allSettled is a fairly recent addition to ECMAScript, having
landed in Node.js 12.9. In order to use it, you'll need to set your compilerOptions
target to es2020 or esnext in your tsconfig.json file. Most modern browsers
support this method, but it's a good idea to verify support before using this
recent feature.

466 | Guide to Promises in TypeScript

Exercise 12.03: Promise.allSettled

We've seen an example of using Promise.allSettled to produce a mixed result
of fulfilled and rejected promises. Now let's combine Promise.allSettled and
Promise.all to aggregate multiple results of our runs of getTheValue():

Note

The code file for this exercise can also be found here:
https://packt.link/D8jIQ.

1. Start with the code from the example above. We are going to want to call
generateTheNumber() three times. Once we have all the results, we can
sort them to print out the highest and lowest results. We can use the same
Array().fill().map() technique described above to create a new array of
generateTheNumber() calls:

Promise.all(

 Array(3)

 .fill(null)

 .map(() => generateTheNumber(10))

);

2. Now that we can resolve three separate calls, we need to manage the output.
First, we can log out the results to see what we need to do next:

Promise.all(

 Array(3)

 .fill(null)

 .map(() => generateTheNumber(10))

).then((result) => console.log(result));

We log out [undefined, undefined, undefined]. That's not what we
wanted. The reason for this is generateTheNumber doesn't actually return its
promise – it didn't need to in the prior example.

3. We can fix that by adding a return statement and removing the void return
type. We also need our callback function to return the results instead of simply
logging them out. All these changes would help a program like this integrate into
a larger application:

const generateTheNumber = (iterations: number) => {

 return Promise.allSettled(

https://packt.link/D8jIQ

Anatomy of a Promise | 467

 Array(iterations)

 .fill(null)

 .map(() => getTheValue())

)

 .then((settledResults) => {

 const results = settledResults.reduce(

 (prev, current) => {

 return current.status === 'fulfilled'

 ? {

 ...prev,

 succeeded: prev.succeeded + 1,

 total: prev.total + current.value,

 }

 : { ...prev, failed: prev.failed + 1 };

 },

 {

 failed: 0,

 succeeded: 0,

 total: 0,

 }

);

 return results;

 })

 .finally(() => console.log('Iteration done!'));

};

With that done we can get our output.

[

 { failed: 0, succeeded: 10, total: 443 },

 { failed: 1, succeeded: 9, total: 424 },

 { failed: 2, succeeded: 8, total: 413 },

]

4. The last step to complete this exercise is we only want to output the highest
and lowest totals. To accomplish this, we can use the Array.map() function
to extract only the totals from the output and the Array.sort() function to
order the above output from lowest to highest, then print the totals from the
first and last entries:

 const totals = results.map((r) => r.total).sort();

 console.log(`The highest total is ${totals[totals.length - 1]}.`);

 console.log(`The lowest total is ${totals[0]}.`);

468 | Guide to Promises in TypeScript

You might get an output similar to the following:

The value is 62

The value is 77

The value is 75

The value is 61

The value is 61

The value is 61

The value is 15

The value is 83

The value is 4

The value is 23

Iteration done!

.

.

.

The highest total is 522.

The lowest total is 401.

Note that only a section of the actual output is displayed for ease
of presentation.

This exercise showed us how we can filter and sort the results of many promises
and create data structures that accurately reflect the state of our application.

Promise.any

At the other end of the spectrum from Promise.allSettled lies Promise.
any. This method takes an iterable (or array) of promises, but instead of settling all
of them, it will resolve to the value of the first promise that resolves successfully.
Promise.any is so new it has yet to be implemented in every browser and at
the time of writing is not available in the LTS version of Node.js. You should check
compatibility and availability before using it.

Anatomy of a Promise | 469

Promise.race

Promise.race has been around for some time and is similar to Promise.any.
Now, Promise.race again takes an iterable of promises and executes them all. The
first promise that resolves or rejects will resolve or reject the race. This is in contrast
to Promise.any in that if the first promise in Promise.any rejects, the other
promises still have an opportunity to resolve successfully:

const oneSecond = new Promise((_resolve, reject) => {

 setTimeout(() => reject("Too slow!"), 1000);

});

const upToTwoSeconds = new Promise(resolve => {

 setTimeout(() => resolve("Made it!"), Math.random() * 2000);

});

Promise.race([oneSecond, upToTwoSeconds])

 .then(result => console.log(result))

 .catch(err => console.error(err));

In this example, one promise always rejects in 1 second while the other resolves at a
random interval between 0 and 2 seconds. If the oneSecond promise wins the race,
the entire promise is rejected. If upToTwoSeconds takes less than a second, then
the promise resolves successfully with the message "Made It!".

A practical example of using Promise.race might be a timeout and fallback feature
where if the primary web service can't respond within an expected amount of time,
the application either switches to a secondary source for data or exhibits some other
behavior. Or perhaps we want to deal with a slow render issue in a web browser
where if a screen paint hasn't finished in the expected amount of time, we switch to a
simpler view. There are lots of cases where Promise.race can ease the complexity
of handling asynchronous operations in TypeScript.

470 | Guide to Promises in TypeScript

Enhancing Promises with Types
The example we're working with so far specifies the type of input to the promise,
but we have to provide a type for the result in each step of the chain. That's because
TypeScript doesn't know what the promise may resolve to so we have to tell it what
kind of type we're getting as the result.

In other words, we're missing out on one of TypeScript's most powerful features:
type inference. Type inference is the ability for TypeScript to know what the type
of something should be without having to be told. A very simple example of type
inference would be the following:

const hello = "hello";

No type is specified. This is because TypeScript understands that the variable hello
is being assigned a string and cannot be reassigned. If we try to pass this variable as
an argument to a function that expects another type, we will get a compilation error,
even though we never specified the type. Let's apply type inference to promises.

First, let's look at the type definition for the Promise object:

new <T>(executor: (resolve: (value?: T | PromiseLike<T>) => void, reject:
(reason?: any) => void) => void): Promise<T>;

T is what's known as a generic. It means any type can be specified to take the place of
T. Let's say we define a promise like this:

new Promise(resolve => {

 resolve("This resolves!");

});

What we're doing here is stating the resolve argument will resolve to an unknown
type. The receiving code will need to provide a type for it. This can be improved by
adding a type value for T:

new Promise<string>(resolve => {

 resolve("This resolves!");

});

Now the promise constructor resolves to a type of Promise<string>. When the
promise becomes fulfilled, it is expected to return a type of string.

Enhancing Promises with Types | 471

Let's examine an example where casting the return type of a promise
becomes important:

const getPromise = async () => new Promise(resolve => resolve(Math.
ceil(Math.random() * 100)));
const printResult = (result: number) => console.log(result);

getPromise().then(result => printResult(result));

If you put this example into an IDE such as VS Code, you'll see that you have a type
error on the result parameter given to printResult. The type that the promise
returned by getPromise is unknown but printResult expects number. We can
fix this problem by providing a type to the promise when we declare it:

const getPromise = async () => new Promise<number>(resolve =>
resolve(Math.ceil(Math.random() * 100)));
const printResult = (result: number) => console.log(result);

getPromise().then(result => printResult(result));

We have added <number> immediately after our promise declaration and TypeScript
knows this promise is expected to resolve to a number. This type-checking will also
be applied to the resolution of our promise. For example, if we tried to resolve to a
value of "Hello!", we'd get another type error now that our promise is expected to
return a number.

Exercise 12.04: Asynchronous Rendering

In this exercise, we'll create a simple website with synchronous rendering and
refactor it so the rendering is asynchronous:

Note

The code file for this exercise can also be found here:
https://packt.link/q8rka.

1. Clone the project from GitHub (https://packt.link/q8rka) to begin. Then,
install dependencies:

npm i

We just installed TypeScript into our project as well as http-server, which is a
simple Node.js HTTP server that will allow us to run our website on localhost.

Now we'll add a few files to get the project started.

https://packt.link/q8rka
https://packt.link/q8rka

472 | Guide to Promises in TypeScript

2. In the root of your project, create a file called index.html and add the
following lines to it:

<html>

 <head>

 <title>The TypeScript Workshop - Exercise 12.03</title>

 <link href="styles.css" rel="stylesheet"></link>

 </head>

 <body>

 <div id="my-data"></div>

 </body>

 <script type="module" src="data-loader.js"></script>

</html>

3. Next, optionally add a stylesheet as the default styles are quite an eyesore. Bring
your own or use something simple like this:

body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

}

input {

 width: 200;

}

4. Add a file called data.json to represent the data we are fetching from a
remote server:

{ "message": "Hello Promise!" }

5. One more to go. Let's add a TypeScript file called data-loader.ts:

const updateUI = (message: any): void => {

 const item = document.getElementById("my-data");

 if (item) {

 item.innerText = `Here is your data: ${message}`;

 }

};

const message = fetch("http://localhost:8080/data.json");

updateUI(message);

Enhancing Promises with Types | 473

That's all you need to run a local service with a TypeScript web application! Later
in the book, we'll see some more robust solutions, but for now, this will let us
focus on the TypeScript without too many bells or whistles around.

6. To see our application, we'll need to transpile the TypeScript and start the local
server. For the best experience, we'll need two separate Command Prompt
windows. In one of them, we'll type a command to transpile the TypeScript and
watch for changes:

npx tsc -w data-loader.ts

7. And in the other window, we'll start our server with a flag to avoid caching so we
can see our changes right away:

npx http-server . -c-1

8. If we navigate to http://localhost:8080, we'll see our application load
and receive this message:

 "Here is your data: [object Promise]".

Something hasn't worked correctly. What we want to see is "Here is your
data: Hello Promise!". If we go and look at the TypeScript code, we'll see
this line:

const message = fetch("http://localhost:8080/data.json");

This isn't working correctly. fetch is an asynchronous request. We are just seeing
the unresolved promise and printing it to the screen.

Another warning sign is the use of any in the updateUI function. Why is the
any type being used there when it should be a string? That's because TypeScript
won't allow us to use a string. TypeScript knows we're calling updateUI with an
unresolved promise and so we'll get a type error if we try to treat that as a string type.
New developers sometimes think they are fixing a problem by using any, but more
often than not they will be ignoring valid errors.

474 | Guide to Promises in TypeScript

In order to get this code to work correctly, you will need to refactor it so that the
promise fetch returns is resolved. When it works correctly, fetch returns a
response object that exposes a data method that also returns a promise, so you
will need to resolve two promises in order to display the data on your page.

Note

The fetch library is a web API for browsers that is a great improvement on
the original XMLHttpRequest specification. It retains all the power of
XMLHttpRequest but the API is much more ergonomic and as such is
used by many web applications, rather than installing a third-party client
library. fetch is not implemented in Node.js natively but there are some
libraries that provide the same functionality. We'll take a look at those later
in the chapter.

Libraries and Native Promises — Third-Party Libraries, Q, and
Bluebird
As stated previously, promises became part of the ECMAScript standard in 2015.
Up until that point, developers used libraries such as Q or Bluebird to fill the gap
in the language. While many developers choose to use native promises, these
libraries remain quite popular with weekly downloads still growing. That said, we
should carefully consider whether it's a good idea to depend on a third-party library
over a native language feature. Unless one of these libraries provides some critical
functionality that we can't do without, we should prefer native features over third-
party libraries. Third-party libraries can introduce bugs, complexity, and security
vulnerabilities and require extra effort to maintain. This isn't an indictment against
open source.

Open source projects (such as TypeScript) are an essential part of today's developer
ecosystem. That said, it's still a good idea to carefully choose our dependencies
and make sure they are well-maintained libraries that are not redundant with
native features.

Libraries and Native Promises — Third-Party Libraries, Q, and Bluebird | 475

It's also worth noting that the APIs of third-party libraries may differ from the native
language feature. For example, the Q library borrows a deferred object from the
jQuery implementation:

import * as Q from "q";

const deferred = Q.defer();

deferred.resolve(123);

deferred.promise.then(val => console.log(val));

This written in a native promise is more like the examples we've seen so far:

const p = new Promise<number>((resolve, reject) => {

 resolve(123);

});

p.then(val => console.log(val));

There's nothing inherently wrong with the Q implementation here, but it's
non-standard and this may make our code less readable to other developers or
prevent us from learning standard best practices.

Bluebird is more similar to the native promise. In fact, it could be used as a polyfill.

Polyfilling Promises

TypeScript will transpile code, but it will not polyfill native language features that
are not present in your target environment. This is critical to understand to avoid
frustration and mysterious bugs. What TypeScript will do for us is allow us to specify
the target environment. Let's look at a simple example.

Consider the following tsconfig.json file:

{

 "compilerOptions": {

 "target": "es6",

 "module": "commonjs",

 "outDir": "./public",

 "strict": true,

 "esModuleInterop": true,

 "forceConsistentCasingInFileNames": true

 }

}

476 | Guide to Promises in TypeScript

Now consider this module in promise.ts:

const p = new Promise<number>((resolve, reject) => {

 resolve(123);

});

p.then(val => console.log(val));

Our code will transpile fine. We enter npx tsc and the transpiled JavaScript output
looks very much like our TypeScript code. The only difference is the type has
been removed:

 const p = new Promise((resolve, reject) => {

 resolve(123);

});

p.then(val => console.log(val));

However, consider if we change the target to es5:

{

 "compilerOptions": {

 "target": "es5",

 "module": "commonjs",

 "outDir": "./public",

 "strict": true,

 "esModuleInterop": true,

 "forceConsistentCasingInFileNames": true

 }

}

Now the project will no longer build:

% npx tsc

src/promise.ts:1:15 - error TS2585: 'Promise' only refers to a type, but
is being used as a value here. Do you need to change your target library?
Try changing the `lib` compiler option to es2015 or later.

1 const p = new Promise<number>((resolve, reject) => {

                ~~~~~~~

Found 1 error.



Libraries and Native Promises — Third-Party Libraries, Q, and Bluebird | 477

TypeScript even warns me that I might want to fix my target. Note that "es2015" 
and "es6" are the same thing (as are "es2016" and "es7", and so on). This is a 
somewhat confusing convention that we simply need to get used to.

This will be fine if I can build my project for an es6+ environment (such as a current 
version of Node.js or any modern browser), but if I need to support a legacy browser 
or a very old version of Node.js, then "fixing" this by setting the compilation target 
higher will only result in a broken application. We'll need to use a polyfill.

In this case, Bluebird can be a really good choice as it has an API very similar to 
native promises. In fact, all I will need to do is npm install bluebird and then 
import the library into my module. The Bluebird library does not include typings 
so to have full IDE support, you'd need to also install @types/bluebird as a 
devDependency:

import { Promise } from "bluebird";

const p = new Promise<number>(resolve => {

  resolve(123);

});

p.then(val => console.log(val));

My transpiled code will now run in a very early version of Node.js, such as version 
0.10 (released in 2013).

Note that Bluebird is designed to be a full-featured Promise library. If I'm just 
looking for a polyfill, I might prefer to use something like es6-promise. Its use is 
exactly the same. I npm install es6-promise and then import the Promise 
class into my module:

import { Promise } from "es6-promise";

const p = new Promise<number>(resolve => {

  resolve(123);

});

p.then(val => console.log(val));



478 | Guide to Promises in TypeScript

If you want to try this yourself, be aware that modern versions of TypeScript won't 
even run on Node.js 0.10! You'll have to transpile your code in a recent version (such 
as Node.js 12) and then switch to Node.js 0.10 to execute the code. To do this, it's a 
good idea to use a version manager such as nvm or n.

This is actually a great example of the power of TypeScript. We can write and build 
our code on a modern version but target a legacy runtime. Setting the compilation 
target will make sure we build code that is suitable for that runtime.

Promisify
Promisification is the practice of taking an asynchronous function that expects a 
callback and turning it into a promise. This is essentially a convenience utility that 
allows you to always write in promises instead of having to use the callbacks of a 
legacy API. It can be really helpful to promisify legacy APIs so that all our code can 
use promises uniformly and be easy to read. But it's more than just a convenience 
to convert callbacks into promises. Some modern APIs will only accept promises as 
parameters. If we could only work on some code with callbacks, we would have to 
wrap the callback asynchronous code with promises manually. Promisification saves 
us the trouble and potentially many lines of code.

Let's work through an example of promisifying a function that expects a callback. We 
have a few options to choose from. Bluebird again provides this functionality with 
Promise.promisify. This time, we'll try a polyfill, es6-promisify. Let's start 
with a function that expects a callback:

const asyncAdder = (n1: number, n2: number, cb: Function) => {

  let err: Error;

  if (n1 === n2) {

    cb(Error("Use doubler instead!"));

  } else {

    cb(null, n1 + n2);

  }

};

asyncAdder(3, 4, (err: Error, sum: number) => {

  if (err) {

    throw err;

  }

  console.log(sum);

});



Promisify | 479

Functions that can be promisified follow a convention where the first argument into 
the callback is an error object. If the error is null or undefined, then the function is 
considered to have been invoked successfully. Here, I am calling asyncAdder, giving 
it two numbers and a callback function. My callback understands that asyncAdder 
will have an error in the first argument position if an error was thrown or the 
sum of the two numbers in the second argument position if it was successful. By 
adhering to this pattern, the function can be promisified. First, we npm install 
es6-promisify and then we import the module:

import { promisify } from "es6-promisify";

const asyncAdder = (n1: number, n2: number, cb: Function) => {

  let err: Error;

  if (n1 === n2) {

    cb(Error("Use doubler instead!"));

  } else {

    cb(null, n1 + n2);

  }

};

const promiseAdder = promisify(asyncAdder);

promiseAdder(3, 4)

  .then((val: number) => console.log(val))

  .catch((err: Error) => console.log(err));

We use the promisify import to wrap our function and now we can work 
exclusively with promises.

Bluebird gives us exactly the same functionality:

import { promisify } from "bluebird";

const asyncAdder = (n1: number, n2: number, cb: Function) => {

  if (n1 === n2) {

    cb(Error("Use doubler instead!"));

  } else {

    cb(null, n1 + n2);

  }

};



480 | Guide to Promises in TypeScript

const promiseAdder = promisify(asyncAdder);

promiseAdder(3, 4)

  .then((val: number) => console.log(val))

  .catch((err: Error) => console.log(err));

Node.js util.promisify

Node.js introduced its own version of promisify as a native feature in version 8 
(2017). Instead of using es6-promise or Bluebird, if we are targeting a Node.js 
8+ environment, we can leverage the util package. Note that since we are writing 
TypeScript, we will need to add the @types/node dependency to take advantage 
of this package. Otherwise, TypeScript will not understand our import. We'll run npm 
install -D @types/node. The -D flag will install the type as a devDependency, 
which means it can be excluded from production builds:

import { promisify } from "util";

const asyncAdder = (n1: number, n2: number, cb: Function) => {

  let err: Error;

  if (n1 === n2) {

    cb(Error("Use doubler instead!"));

  } else {

    cb(null, n1 + n2);

  }

};

const promiseAdder = promisify(asyncAdder);

promiseAdder(3, 4)

  .then((val: number) => console.log(val))

  .catch((err: Error) => console.log(err));

Obviously, if we want our code to run in a browser, this won't work and we should 
use one of the other libraries, such as Bluebird, to enable this functionality.

Asynchronous FileSystem
As of Node.js 10 (released 2018), the FileSystem API (fs) comes with promisified 
async versions of all the functions as well as blocking synchronous versions of them. 
Let's look at the same operation with all three alternatives.



Asynchronous FileSystem | 481

fs.readFile

Many Node.js developers have worked with this API. This method will read a file, 
taking the file path as the first argument and a callback as the second argument. 
The callback will receive one or two arguments, an error (should one occur) as the 
first argument and a data buffer object as the second argument, should the read 
be successful:

import { readFile } from "fs";

import { resolve } from "path";

const filePath = resolve(__dirname, "text.txt");

readFile(filePath, (err, data) => {

  if (err) {

    throw err;

  }

  console.log(data.toString());

});

We read the file and log out the contents asynchronously. Anyone who has worked 
with the Node.js fs library in the past has probably seen code that looks like this. 
The code is non-blocking, which means even if the file is very large and the read is 
very slow, it won't prevent the application from performing other operations in the 
meantime. There's nothing wrong with this code other than it's not as concise and 
modern as we might like.

In the example above, we're reading the file and logging to the console – not very 
useful, but in a real-world scenario, we might be reading a config file on startup, 
handling the documents of clients, or managing the lifecycle of web assets. There are 
many reasons you might need to access the local filesystem in a Node.js application.

fs.readFileSync

The fs library also exposes a fully synchronous API, meaning its operations are 
blocking and the event loop won't progress until these operations are complete. Such 
blocking operations are more often used with command-line utilities where taking 
full advantage of the event loop isn't a priority and instead, simple, clean code is the 
priority. With this API, we can write some nice, concise code like this:

import { readFileSync } from "fs";

import { resolve } from "path";



482 | Guide to Promises in TypeScript

const filePath = resolve(__dirname, "text.txt");

console.log(readFileSync(filePath).toString());

It could be tempting to write code like this and call it a day, but readFileSync is 
a blocking operation so we must beware. The main execution thread will actually be 
paused until this work is complete. This may still be appropriate for a command-line 
utility, but it could be a real disaster to put code like this in a web API.

The fs Promises API

The fs library exposes the promises API, which can give us the best of both worlds, 
asynchronous execution and concise code:

import { promises } from "fs";

import { resolve } from "path";

const filePath = resolve(__dirname, "text.txt");

promises.readFile(filePath).then(file => console.log(file.toString()));

Using the promises API lets us write nearly as concise code as the synchronous 
version, but now we are fully asynchronous, making the code suitable for a high-
throughput web application or any other process where a blocking operation would 
be unacceptable.

Exercise 12.05: The fs Promises API

In this exercise, you will use the fs promises API to concatenate two files into one. 
Whenever possible, make your code DRY (don't repeat yourself) by using functions. 
You'll need to use readFile and writeFile. The only dependencies needed for 
this program are ts-node (for execution), typescript, and @types/node so we 
have the types for the built-in fs and path libraries in Node.js: 

Note 

The code file for this exercise can also be found here:  
https://packt.link/M3MH3.

1. Using the file in the GitHub repo as a basis for this exercise, navigate to the 
exercise directory and type npm i to install these dependencies.

https://packt.link/M3MH3


Asynchronous FileSystem | 483

2. We are going to want to read two separate files using readFile and then use 
writeFile to write our output text file. The sample project already has two 
text files with some simple text. Feel free to add your own files and text.

3. This project could be completed using readFileSync and writeFileSync. 
That code would look something like this:

import { readFileSync, writeFileSync } from "fs";

import { resolve } from "path";

const file1 = readFileSync(resolve(__dirname, 'file1.txt'));

const file2 = readFileSync(resolve(__dirname, 'file2.txt'));

writeFileSync(resolve(__dirname, 'output.txt'), [file1, file2].
join('\n'));

The resolve function from the path library resolves paths on your filesystem 
and is often used alongside the fs library, as depicted above. Both these 
libraries are part of the Node.js standard library so we need only install typings, 
not the libraries themselves.

4. We can execute this program with npx ts-node file-concat.ts. This will 
produce a file called output.txt, which contains this text:

Text in file 1.

Text in file 2.

So this works without promises. And this is probably fine for a command-line 
utility executed by a single user on a single workstation. However, if this kind 
of code were put into a web server, we might start to see some blocking issues. 
Synchronous filesystem calls are blocking and block the event loop. Doing this in 
a production application can cause latency or failure.

5. We could solve this problem using readFile and writeFile, which are both 
asynchronous functions that take callbacks, but then we'd need to nest the 
second readFile inside the first. The code would look like this:

import { readFile, writeFile } from 'fs';

import { resolve } from 'path';

readFile(resolve(__dirname, 'file1.txt'), (err, file1) => {

  if (err) throw err;

  readFile(resolve(__dirname, 'file1.txt'), (err, file2) => {



484 | Guide to Promises in TypeScript

    if (err) throw err;

    writeFile(

      resolve(__dirname, 'output.txt'),

      [file1, file2].join('\n'),

      (err) => {

        if (err) throw err;

      }

    );

  });

});

We are now clear of blocking issues, but the code is looking quite ugly. It's not 
hard to imagine another developer failing to understand the intent of this code 
and introducing a bug. Additionally, by putting the second readFile as a 
callback in the first, we are making the function slower than it needs to be. In a 
perfect world, those calls can be made in parallel. To do that, we can leverage 
the promises API.

6. The best way to do things in parallel with promises is Promise.all. We can 
wrap our two readFile calls in a single Promise.all. To do that, we need to 
promisify readFile. Lucky for us, the fs library comes with a helper that will 
do that for us. Instead of importing readFile, we import promises from fs 
and call the readFile method on that object:

import { promises } from 'fs';

import { resolve } from 'path';

Promise.all([

  promises.readFile(resolve(__dirname, 'file1.txt')),

  promises.readFile(resolve(__dirname, 'file2.txt')),

]);

7. These two reads will now run asynchronously in parallel. Now we can handle the 
output and use the same array.join function from the earlier example along 
with promises.writeFile:

import { promises } from 'fs';

import { resolve } from 'path';

Promise.all([

  promises.readFile(resolve(__dirname, 'file1.txt')),

  promises.readFile(resolve(__dirname, 'file2.txt')),



Working with Databases | 485

]).then((files) => {

  promises.writeFile(resolve(__dirname, 'output.txt'), files.
join('\n'));
});

8. This code is looking quite a lot cleaner than the nested code above. When we 
execute it with npx ts-node file-concat.ts, we get the expected output 
of output.txt containing the concatenated text:

Text in file 1.

Text in file 2.

Now that we have this working, we can certainly imagine much more 
complicated programs manipulating other types of files, such as a PDF merge 
function as a web service. Though some of the internals would be a lot more 
challenging to implement, the principles would be the same.

Working with Databases
It is very common for Node.js applications to work with a backend database such 
as mysql or postgres. It is critical that queries against a database be made 
asynchronously. Production-grade Node.js web services may serve thousands of 
requests per second. If it were necessary to pause the main execution thread for 
queries made synchronously against a database, these services just wouldn't scale at 
all. Asynchronous execution is critical to making this work.

The process of negotiating a database connection, sending a SQL string, and parsing 
the response is complicated and not a native feature of Node.js and so we will almost 
always use a third-party library to manage this. These libraries are guaranteed to 
implement some kind of callback or promise pattern and we'll see it throughout their 
documentation and examples. Depending on the library you choose, you may have 
to implement a callback pattern, you may get to work with promises, or you may 
be presented with async/await (see Chapter 13 Async/Await). You may even get a 
choice of any of these as it's definitely possible to provide all of the above as options.

For these examples, we'll use sqlite. Now, sqlite is a nice library that 
implements a fairly standard SQL syntax and can operate against a static file as a 
database or even run in memory. We will use the in-memory option. This means that 
there is nothing that needs to be done to set up our database. But we will have to 
run a few scripts to create a table or two and populate it on startup. It would be fairly 
simple to adapt these exercises to work with mysql, postgres, or even mongodb. 
All of these databases can be installed on your workstation or run in a Docker 
container for local development.



486 | Guide to Promises in TypeScript

For the first example, let's look at sqlite3. This library has an asynchronous API. 
Unlike more permanent and robust databases such as mysql or postgres, some 
sqlite client libraries are actually synchronous, but we won't be looking at those 
as they aren't very useful for demonstrating how promises work. So sqlite3 
implements an asynchronous API, but it works entirely with callbacks. Here is an 
example of creating an in-memory database, adding a table, adding a row to that 
table, and then querying back the row we added:

import { Database } from "sqlite3";

const db = new Database(":memory:", err => {

  if (err) {

    console.error(err);

    return db.close();

  }

  db.run("CREATE TABLE promise (id int, desc char);", err => {

    if (err) {

      console.error(err);

      return db.close();

    }

    db.run(

      "INSERT INTO promise VALUES (1, 'I will always lint my code.');",

      () => {

        db.all("SELECT * FROM promise;", (err, rows) => {

          if (err) {

            console.error(err);

            return db.close();

          }

          console.log(rows);

          db.close(err => {

            if (err) {

              return console.error(err);

            }

          });

        });

      }

    );

  });

});



Working with Databases | 487

This is exactly what developers mean when they complain about "callback hell." 
Again, this code executes perfectly well, but it is needlessly verbose, becomes deeply 
nested, and repeats itself, especially in the error-handling department. Of course, the 
code could be improved by adding abstractions and chaining together methods, but 
that doesn't change the fact that callbacks aren't a very modern way to think about 
writing Node.js code.

Since all of these callbacks follow the pattern of expecting the first argument to be 
an error object, we could promisify sqlite3, but as is often the case, somebody 
has already done this work for us and provided a library called simply sqlite that 
mimics the exact API of sqlite3, but implements a promise API.

I can rewrite the same code using this library and the result is a good deal 
more pleasing:

import { open } from "sqlite";

import * as sqlite from "sqlite3";

open({ driver: sqlite.Database, filename: ":memory:" }).then((db) => {  
return db
    .run("CREATE TABLE promise (id int, desc char);")

    .then(() => {

      return db.run(

        "INSERT INTO promise VALUES (1, 'I will always lint my code.');"

      );

    })

    .then(() => {

      return db.all("SELECT * FROM promise;");

    })

    .then(rows => {

      console.log(rows);

    })

    .catch(err => console.error(err))

    .finally(() => db.close());

});

We've dropped nearly half of the lines of code and it's not nested as deeply. This still 
could be improved, but it's much cleaner now. Best of all, we have a single catch 
block followed by finally, to make sure the database connection is closed at 
the end.



488 | Guide to Promises in TypeScript

Developing with REST
In the next exercise, we'll build a RESTful API. REST is a very common standard 
for web traffic. Most websites and web APIs operate using REST. It stands for 
Representational State Transfer and defines concepts such as operations (sometimes 
called "methods" or even "verbs") such as GET, DELETE, POST, PUT, and PATCH and 
resources (the "path" or "noun"). The full scope of REST is beyond this book.

Developers working on RESTful APIs frequently find it useful to work with some sort 
of REST client. The REST client can be configured to make different kinds of requests 
and display the responses. Requests can be saved and run again in the future. Some 
REST clients allow the creation of scenarios or test suites.

Postman is a popular and free REST client. If you don't already have a REST client 
you're comfortable working with, try downloading Postman at https://www.postman.
com/downloads/ before the next exercise. Once you've installed Postman, check 
its documentation (https://learning.postman.com/docs/getting-started/sending-the-first-
request/) and get ready for the next exercise.

Exercise 12.06: Implementing a RESTful API backed by sqlite

In this exercise, you will create a REST API backed by sqlite. In this project, you 
will implement all CRUD (create, read, update, and delete) operations in the sqlite 
database and we will expose the corresponding REST verbs (POST, GET, PUT, and 
DELETE) from our web server:

Note 

The code file for this exercise can also be found here:  
https://packt.link/rlX7G.

1. To get started, clone the project from GitHub and change to the directory for 
this exercise.

2. Install the dependencies:

npm i

https://www.postman.com/downloads/
https://www.postman.com/downloads/
https://learning.postman.com/docs/getting-started/sending-the-first-request/
https://learning.postman.com/docs/getting-started/sending-the-first-request/
https://packt.link/rlX7G


Developing with REST | 489

This will install typings for Node.js, as well as ts-node and typescript 
as development dependencies while sqlite and sqlite3 are regular 
dependencies. All of these dependencies are already specified in the project's 
package.json file. Some of the dependencies, such as @types/node, 
ts-node, and typescript, are specified as devDependencies and others 
are regular dependencies. For the purpose of this exercise, the distinction is 
not going to matter but it's a common practice to run application builds so that 
only the necessary dependencies are part of the production build, thus the 
separation. The way to run this kind of build is npm install --production 
if you only wish to install the production dependencies or npm prune 
--production if you've already installed your devDependencies and 
wish to remove them.

3. Now let's create a file to hold our sqlite database. Add a file in the root of 
your project called db.ts. We'll go with an object-oriented approach for the 
database and create a singleton object to represent our database and access 
patterns. One reason for doing this is we are going to want to maintain the 
state of whether or not the database has been initialized. Calling open on an 
in-memory sqlite database will destroy the database and create another 
one immediately, thus we only want to open the database connection if it isn't 
already open:

import { Database } from "sqlite";

import sqlite from "sqlite3";

export interface PromiseModel {

  id: number;

  desc: string;

}

export class PromiseDB {

  private db: Database;

  private initialized = false;

  constructor() {

    this.db = new Database({

      driver: sqlite.Database,

      filename: ":memory:",

    });

  }

}



490 | Guide to Promises in TypeScript

It's always a good idea to create a class or interface to describe our entity, so 
here we have created PromiseModel. It will be useful to other parts of our 
application to be able to understand the properties our entity has as well as their 
types, since the database will only return untyped query results. We export the 
interface so that it can be used by other modules.

4. Our database is an object with a constructor that will have a private member 
representing the actual database connection and a Boolean value to track 
whether the database has been initialized. Let's add a method for initialization:

  initialize = () => {

    if (this.initialized) {

      return Promise.resolve(true);

    }

    return this.db

      .open()

      .then(() =>

        this.db

          .run("CREATE TABLE promise (id INTEGER PRIMARY KEY, desc 
CHAR);")
          .then(() => (this.initialized = true))

      );

  };

First, we check to see if we've already initialized the database. If so, we're done 
and we resolve the promise. If not, we call open, then once that promise has 
resolved, run our table creation SQL, and then finally update the state of the 
database so that we don't accidentally re-initialize it.

We could try to initialize the database in the constructor. The problem with 
that approach is that constructors do not resolve promises before returning. 
Constructor functions may call methods that return promises, but they will 
not resolve the promise. It's usually cleaner to create the singleton object and 
then invoke the initialization promise separately. For more information about 
singleton classes, see Chapter 8, Dependency Injection in TypeScript.

5. Now let's add some methods. This will be pretty simple since our table only has 
two columns:

  create = (payload: PromiseModel) =>

    this.db.run("INSERT INTO promise (desc) VALUES (?);", payload.
desc);



Developing with REST | 491

This method takes an object of type PromiseModel as an argument, sends 
a prepared statement (a parameterized SQL statement that is safe from SQL 
injection attacks), and then returns RunResult, which contains some metadata 
about the operation that took place. Since the sqlite library ships with typings, 
we're able to infer the return type without needing to specify it. The return type 
in this case is Promise<ISqlite.RunResult<sqlite.Statement>>. 
We could paste all of that into our code, but it's much cleaner the way it is. 
Remember, if a good type can be inferred, it's best to just let TypeScript do the 
heavy lifting.

6. In addition to the create method, we will want delete, getAll, getOne, 
and update methods. The delete method is very straightforward:

  delete = (id: number) => this.db.run("DELETE FROM promise WHERE id 
= ?", id);

7. Since we're calling db.run again, we're again returning that RunResult type. 
Let's see what it looks like to return some of your own data:

  getAll = () => this.db.all<PromiseModel[]>("SELECT * FROM 
promise;");

  getOne = (id: number) =>

    this.db.get<PromiseModel>("SELECT * FROM promise WHERE id = ?", 
id);

These methods use type parameters to specify the expected return types. If the 
type parameters were omitted, these methods would return any types, which 
wouldn't be very helpful to the other parts of our application.

8. Last of all is the update method. This one will use our PromiseModel again to 
type check the input:

  update = (payload: PromiseModel) =>

    this.db.run(

      "UPDATE promise SET desc = ? where id = ?",

      payload.desc,

      payload.id

    );



492 | Guide to Promises in TypeScript

9. The final code for the class looks like this:

import { Database } from "sqlite";

import sqlite from "sqlite3";

export interface PromiseModel {

  id: number;

  desc: string;

}

export class PromiseDB {

  private db: Database;

  private initialized = false;

  constructor() {

    this.db = new Database({

      driver: sqlite.Database,

      filename: ":memory:",

    });

  }

  initialize = () => {

    if (this.initialized) {

      return Promise.resolve(true);

    }

    return this.db

      .open()

      .then(() =>

        this.db

          .run("CREATE TABLE promise (id INTEGER PRIMARY KEY, desc 
CHAR);")
          .then(() => (this.initialized = true))

      );

  };

  create = (payload: PromiseModel) =>

    this.db.run("INSERT INTO promise (desc) VALUES (?);", payload.
desc);

  delete = (id: number) => this.db.run("DELETE FROM promise WHERE id 
= ?", id);

  getAll = () => this.db.all<PromiseModel[]>("SELECT * FROM 



Developing with REST | 493

promise;");

  getOne = (id: number) =>

    this.db.get<PromiseModel>("SELECT * FROM promise WHERE id = ?", 
id);

  update = (payload: PromiseModel) =>

    this.db.run(

      "UPDATE promise SET desc = ? where id = ?",

      payload.desc,

      payload.id

    );

}

The next step is to build an HTTP server implementing a RESTful interface. 
Many Node.js developers use frameworks such as Express.js, Fastify, or 
NestJS, but for this exercise, we're just going to build a basic HTTP server. 
It won't have all the niceties of those frameworks, but it'll help us focus on 
asynchronous programming.

10. To create our server, we'll create a class called App and expose an instance of it. 
Create a file called app.ts and declare the class:

import { createServer, IncomingMessage, Server, ServerResponse } from 
"http";

import { PromiseDB } from "./db";

class App {

  public db: PromiseDB;

  private server: Server;

  constructor(private port: number) {

    this.db = new PromiseDB();

    this.server = createServer(this.requestHandler);

  }

}

export const app = new App(3000);



494 | Guide to Promises in TypeScript

11. Our App class takes an argument of the port number we'll run our server 
on. The class will maintain the state of the running server as well as the 
database connection. Like our PromiseDB class, the constructor needs to be 
supplemented by an initialize method to handle the asynchronous setup: 

  initialize = () => {

    return Promise.all([

      this.db.initialize(),

      new Promise((resolve) => this.server.listen(this.port, () => 
resolve(true))),
    ]).then(() => console.log("Application is ready!"));

  };

This method uses Promise.all so that we can initialize our database and 
server in parallel. When both are ready, it'll log a message letting us know the 
application is ready to handle requests. We are calling the initialize method 
on the PromiseDB instance that we've exposed to our App class. Unfortunately, 
server.listen doesn't return a promise but instead implements a fairly 
primitive API that requires a callback so we are wrapping it in our own promise. 
It's tempting to want to wrap server.listen in util.promisify, but 
even that won't work because util.promisify expects the callback function 
to expect the first argument to be an error object and the server.listen 
callback doesn't take any arguments. Sometimes, despite our best efforts, we 
just have to use a callback, but we can usually wrap them with promises.

12. We're also going to need to add a requestHandler method. createServer 
is a method exposed by the http module in Node.js. It takes an argument that 
should be a function to handle requests and supply a response. Again, the API 
for the http module is fairly low-level:

requestHandler = (req: IncomingMessage, res: ServerResponse) => {

    res.setHeader("Access-Control-Allow-Origin", "*");

    res.setHeader("Access-Control-Allow-Headers", "*");

    res.setHeader(

      "Access-Control-Allow-Methods",

      "DELETE, GET, OPTIONS, POST, PUT"

    );

    if (req.method === "OPTIONS") {

      return res.end();

    }

    const urlParts = req.url?.split("/") ?? "/";

    switch (urlParts[1]) {



Developing with REST | 495

      case "promise":

        return promiseRouter(req, res);

      default:

        return this.handleError(res, 404, "Not Found.");

    }

  };

We want our application to direct all traffic on the /promise resource to our 
promises API. This will allow us to add more resources (maybe /admin or /
users) later on. The request handler's job is to see if we have requested the /
promise route and then direct traffic to that specific router. Since we haven't 
defined any other resources, we'll return a 404 if we request any other route.

Note that we are handling the OPTIONS HTTP verb differently than any other. 
If we get a request with that verb, we set the "Access-Control-Allow-
Origin" header and return a successful response. This is for development 
convenience. The topic of CORS is beyond the scope of this book, and 
readers are encouraged to learn more about it before implementing it in a 
production environment.

13. That error handler needs a definition, so let's add one:

  handleError = (

    res: ServerResponse,

    statusCode = 500,

    message = "Internal Server Error."

  ) => res.writeHead(statusCode).end(message);

This is a nice one-liner that by default will throw a 500 status code Internal 
Server Error, but can take optional parameters to return any error code 
or message. Our default handler sets the status code to 404 and provides the 
message "Not Found".

14. We add a call to initialize at the end and we're good to go. Let's take 
another look at the App class:

import { createServer, IncomingMessage, Server, ServerResponse } from 
"http";

import { PromiseDB } from "./db";

import { promiseRouter } from "./router";

class App {

  public db: PromiseDB;



496 | Guide to Promises in TypeScript

  private server: Server;

  constructor(private port: number) {

    this.db = new PromiseDB();

    this.server = createServer(this.requestHandler);

  }

  initialize = () => {

    return Promise.all([

      this.db.initialize(),

      new Promise((resolve) => this.server.listen(this.port, () => 
resolve(true))),
    ]).then(() => console.log("Application is ready!"));

  };

  handleError = (

    res: ServerResponse,

    statusCode = 500,

    message = "Internal Server Error."

  ) => res.writeHead(statusCode).end(message);

requestHandler = (req: IncomingMessage, res: ServerResponse) => {

    res.setHeader("Access-Control-Allow-Origin", "*");

    res.setHeader("Access-Control-Allow-Headers", "*");

    res.setHeader(

      "Access-Control-Allow-Methods",

      "DELETE, GET, OPTIONS, POST, PUT"

    );

    if (req.method === "OPTIONS") {

      return res.end();

    }

    const urlParts = req.url?.split("/") ?? "/";

    switch (urlParts[1]) {

      case "promise":

        return promiseRouter(req, res);

      default:

        return this.handleError(res, 404, "Not Found.");

    }

  };

}



Developing with REST | 497

export const app = new App(3000);

app.initialize();

If you've implemented all this in code, you're probably still getting an error on 
promiseRouter. That's because we haven't written that yet.

15. Add a router.ts file to your project. This will be the last part we need to 
build this simple API. A more complicated application would hopefully include 
a more sophisticated directory structure and most likely be based on a leading 
framework such as Express.js or NestJS.

Unlike our database and server modules, the router is stateless. It does not need 
to be initialized and does not track any variables. We could still create a class for 
our router, but let's instead use a functional programming style. There's really 
no right or wrong way to do this. Instead of using classes for our database and 
server, we could likewise use a functional style.

We're going to work on creating several handlers, tie them together with a 
router based on HTTP verbs, and also create a body parser. Let's start with the 
body parser.

16. Readers who have some experience with the Express.js framework may have 
used its powerful bodyParser module. It's normally a good idea to use an 
off-the-shelf solution for something like that, but in this exercise, you will 
write your own in order to get a closer look at how we can take the request or 
IncomingMessage object as a stream and convert it into a typed object:

const parseBody = (req: IncomingMessage): Promise<PromiseModel> => {

  return new Promise((resolve, reject) => {

    let body = "";

    req.on("data", (chunk) => (body += chunk));

    req.on("end", () => {

      try {

        resolve(JSON.parse(body));

      } catch (e) {

        reject(e);

      }

    });

  });

};



498 | Guide to Promises in TypeScript

The data stream is again a fairly low-level API that we must wrap in a promise. 
The stream is event-based, as are a lot of the Node.js APIs. In this case, we are 
listening for two separate events, data and end. Each time we get a data 
event, we add data to the body string. When we receive the end event, we can 
finally resolve our promise. Since the data is a string at this point and we want 
an object, we will use JSON.parse to parse the object. JSON.parse must be 
wrapped with try/catch to catch any parsing errors.

By default, JSON.parse returns an any type. This type is too broad to be 
of any use in checking our application for type correctness. Fortunately, we 
can add proper type checking by setting the return type of parseBody to 
Promise<PromiseModel>. This will narrow the type of the object returned 
by JSON.parse to PromiseModel and the rest of our application can expect 
that type to have been parsed. Note that this is a compile-time check and does 
not guarantee the correct data has come from a third-party source such as an 
end user. It is advisable to combine type checks with validators or type guards to 
ensure consistency. When in doubt, employ good error handling.

17. Now that you have a good method for parsing the request body, let's add one to 
handle the create action:

const handleCreate = (req: IncomingMessage, res: ServerResponse) =>

  parseBody(req)

    .then((body) => app.db.create(body).then(() => res.end()))

    .catch((err) => app.handleError(res, 500, err.message));

18. This function parses the body of the request, attempts to insert it into our 
database, and then responds with a default 200 response if the operation was 
successful. Note that the chained catch at the end will catch any errors that 
occur in the promise. If our body parsing fails, the error will be caught here, even 
though it's placed after db.create in the chain.

19. Now let's handle the delete action:

const handleDelete = (requestParam: number, res: ServerResponse) =>

  app.db

    .delete(requestParam)

    .then(() => res.end())

    .catch((err) => app.handleError(res, 500, err.message));



Developing with REST | 499

The HTTP DELETE verb does not use a body. Instead, we will take the ID of 
the row we want to delete from the URL. We'll see how that routing works in 
a moment.

20. The GET operations need to return some data and will use JSON.stringify 
to serialize their response objects to send them to a client:

const handleGetAll = (res: ServerResponse) =>

  app.db

    .getAll()

    .then((data) => res.end(JSON.stringify(data)))

    .catch((err) => app.handleError(res, 500, err.message));

const handleGetOne = (requestParam: number, res: ServerResponse) =>

  app.db

    .getOne(requestParam)

    .then((data) => res.end(JSON.stringify(data)))

    .catch((err) => app.handleError(res, 500, err.message));

21. The update action looks similar to delete:

const handleUpdate = (req: IncomingMessage, res: ServerResponse) =>

  parseBody(req)

    .then((body) => app.db.update(body).then(() => res.end()))

    .catch((err) => app.handleError(res, 500, err.message));

22. Finally, we just need a router. Your router will need to make a decision based on 
the HTTP verb used as well as any request parameter that may refer to the ID of 
the row we want to interact with. We will also set the Content-Type header to 
application/json for all responses. Then we simply need to delegate to the 
correct handler:

export const promiseRouter = (req: IncomingMessage, res: 
ServerResponse) => {
  const urlParts = req.url?.split("/") ?? "/";

  const requestParam = urlParts[2];

  res.setHeader("Content-Type", "application/json");

  switch (req.method) {

    case "DELETE":

      if (requestParam) {



500 | Guide to Promises in TypeScript

        return handleDelete(Number.parseInt(requestParam), res);

      }

    case "GET":

      if (requestParam) {

        return handleGetOne(Number.parseInt(requestParam), res);

      }

      return handleGetAll(res);

    case "POST":

      return handleCreate(req, res);

    case "PUT":

      return handleUpdate(req, res);

    default:

      app.handleError(res, 404, "Not Found.");

  }

};

23. Now it's time to try our application. We installed ts-node earlier. This library 
allows us to transpile and run our TypeScript program in a single step. It is not 
necessarily recommended to use ts-node in production, but it makes for a 
very handy development tool. Let's try it now:

 npx ts-node app.ts

You should see the following on your console:

Application is ready!

This implies that your application is ready to start receiving requests. If not, you 
may have a typo somewhere. Let's try it out. You can either use a REST client or 
curl. This exercise uses Postman



Developing with REST | 501

24. If you make a GET request to http://localhost:3000/promise, you will 
get an empty array ([]) back: 

Figure 12.3: Initial GET request

This is because we haven't created any records yet. 

25. Try a POST with the payload {"desc":"Always lint your code"}: 

Figure 12.4: POST data



502 | Guide to Promises in TypeScript

26. Now the GET request returns [{"id":1,"desc":"Always lint your 
code"}]: 

Figure 12.5: Use GET to retrieve data

27. If you do a request to http://localhost:3000/promise/1, you will get a 
single object back: 

Figure 12.6: Single object



Developing with REST | 503

28. If you request http://localhost:3000/promise/2, you will get nothing: 

Figure 12.7: No items found

29. If you request http://localhost:3000/something-else, you will get a 
404 response: 

Figure 12.8: 404 response



504 | Guide to Promises in TypeScript

Looks like things are working. Experiment with the different HTTP verbs. Try 
giving invalid input and see how the error handling works. We'll use this API in 
the next section.

Putting It All Together – Building a Promise App
We've learned techniques for using promises in web projects as well as Node.js 
APIs. Let's combine our earlier exercises to build a web application that renders 
progressively as data is ready and makes use of asynchronous programming on the 
server to avoid blocking the event loop.

Activity 12.01: Building a Promise App

In this activity, we're going to build a web application that talks to the API we just built. 
Although frameworks such as Angular, React, and Vue are very popular, those are 
covered in later chapters so we will build a very basic TypeScript application with no 
bells or whistles.

Note

This activity provides a UI application that communicates with the backend 
API we built in Exercise 12.06, Implementing a RESTful API backed by sqlite. 
In order to get the output shown, you will need to have your API running. 
Return to that exercise for help if you need it.

This UI application will connect to our API and allow us to modify the data we store in 
our database. We will be able to list out the data we've saved (the promises we make), 
create new items to save, and delete items. Our UI application will need to make GET, 
POST, and DELETE calls to our backend API. It will need to use an HTTP client to 
do that. We could install a library such as axios to handle that or we could use the 
native Fetch API available in all modern web browsers.

Our web application will also need to be able to dynamically update the UI. 
Modern view libraries such as react or vue do that for us, but in this case we are 
framework-free so we'll need to use more DOM (document object model) APIs such 
as getElementById, createElement, and appendChild. These are natively 
available in all web browsers with no libraries needed.



Putting It All Together – Building a Promise App | 505

Implementing this application using promises will be critical because all of the API 
calls will be asynchronous. We will perform an action, such as a click, our application 
will call the API, then it will respond with data and then and only then will the promise 
resolve and cause a change in the DOM state.

Here are some high-level steps that will enable you to create the app:

Note

The code file for this activity can be found here: https://packt.link/RlYli.

1. Create a static html page with css to be served via http-server for 
local development.

2. Add an app.ts file to make a web request to the backend using fetch and do 
the required DOM manipulation based on the response.

3. Transpile the app.ts file into app.js and test against the local server using 
a web browser.

4. Make adjustments to app.ts and continue testing until all the scenarios 
are working.

Once you have completed the activity, you should be able to view the form on 
localhost:8080. An example is shown here:

Figure 12.9: Completed form

Note

The solution to this activity can be found via this link.

https://packt.link/RlYli


506 | Guide to Promises in TypeScript

Summary
We have learned how promises came to be a part of the ECMAScript standard, 
taken a tour of the native implementation, and worked through sample projects 
using promises to solve real-world problems. We also explored how TypeScript 
can enhance the promise spec and how we can polyfill promises when targeting 
environments that don't include native promise support. We contrasted the Bluebird 
promise library with native promises. We learned about different ways of interacting 
with the filesystem using Node.js and we also covered managing asynchronous 
database connections and queries. In the end, we put all of this together into a 
working application.

In the next chapter, we will build upon the asynchronous programming paradigm by 
covering async and await. We'll discuss when to use these over promises and the 
place promises still have in the TypeScript ecosystem.







Overview

The async/await keywords give developers a more concise way to 
write asynchronous, non-blocking programs. In this chapter, we'll learn 
all about this syntactic sugar, a term for more concise and expressive 
syntax, for promises and how it drives modern software development. We 
will look at common uses of async/await and discuss the landscape of 
asynchronous programming in TypeScript. By the end of this chapter, you 
will be able to implement async/await keywords in TypeScript and use them 
to write asynchronous programs.

Async/Await in TypeScript

13



510 | Async/Await in TypeScript

Introduction
The previous chapter got you started on promises in TypeScript. While promises 
improved our ability to write asynchronous code without the ugliness of nested 
callbacks, developers still wanted a better way to write asynchronous code. The 
promise syntax is sometimes challenging for programmers with a background in the 
C family of languages, and so the "syntactic sugar" of async/await was proposed to 
be added to the ECMAScript specification.

In this chapter, we'll learn about the introduction of new asynchronous programming 
paradigms to the ECMAScript standard, examine the syntax, and look at their use 
in TypeScript. We'll also cover the new (as of the time of writing) top-level await 
feature, which allows asynchronous programming outside of an async function. We 
will again look at error handling in asynchronous programming and examine the pros 
and cons of using async/await syntax versus promises.

Readers who have been through the prior chapter will see that there is still some 
nesting involved in promises. While the flow is much easier to manage through 
multiple promises than it is with nested callbacks, we still have no mechanism by 
which we can return control to the top level.

For example, consider a getData function that returns a promise. The code that 
invokes this function will look something like this:

getData().then(data => {

  // do something with the data

});

We don't have any means to propagate the data value to the outer scope. We 
couldn't deal with that value in a subsequent scope. Some programmers may attempt 
to write code that looks like this:

let myData;

getData().then(data => {

  myData = data

});

console.log(myData);



Evolution and Motivation | 511

This code will always log out undefined. It seems like it should work, but it 
won't because the promise callback won't be invoked until the promise returns. 
Asynchronous programming like this can be confusing and lead to lots of bugs. 
async/await solve this problem by allowing us to pause the execution of code 
pending the resolution of a promise. We can rewrite the preceding code using 
async/await syntax:

const myData = await getData();

console.log(myData);

We've gone from five lines of code to two. The synchronous operation of console.
log will wait for the promise to resolve. The code is much more understandable, and 
we can store our variable at the top scope without nesting.

Because TypeScript is transpiled to JavaScript in most cases, we need to make sure 
that we select the correct target environment in order for our code to run. This topic 
will be dealt with in greater detail later in the chapter.

Evolution and Motivation
Although promises moved the needle considerably when it came to asynchronous 
programming paradigms, there remained a desire for a lighter syntax that relied less 
on explicitly declaring promise objects. Adding the async/await keywords to the 
ECMAScript specification would allow developers to reduce boilerplate and work with 
promises. The concept comes from the C# programming language, which in turn 
borrowed the concept of asynchronous workflows from F#.

An asynchronous function allows a program to continue normal operation even 
though that function call has yet to return. The program does not wait for that 
asynchronous function call to complete until the await keyword is found. More 
significantly, using await will not block the event loop. Even if we have paused part 
of a program to await the result of an asynchronous function call, other operations 
can still complete. The event loop is not blocked. For more on the event loop, return 
to Chapter 12, Guide to Promises in TypeScript.



512 | Async/Await in TypeScript

The great thing about these keywords is that they are immediately compatible with 
promises. We can await any promise, thereby avoiding having to use the then() API. 
This capability means that along with the concept of promisification (see Chapter 12, 
Guide to Promises in TypeScript), we can use the latest syntax even when integrating 
with older libraries or modules. To demonstrate this, let's return to an example from 
the preceding chapter:

import { promises } from "fs";

promises.readFile('text.txt').then(file => console.log(file.toString()));

This example uses the promises API from the fs (filesystem) module from Node.js. 
The code reads a file from the local filesystem and logs the contents to the console. 
We can use await syntax with this code: 

import { promises } from "fs";

const text = (await promises.readFile('text.txt')).toString();

console.log(text);

Note that in order to run this code, you must be able to use top-level await, which, 
at the time of this writing, requires a bit of extra setup. Refer to the section later 
in this chapter. The takeaway from this example is that we are still able to use the 
promises API from the fs module, even if we prefer async/await.

async/await in TypeScript
The maintainers of TypeScript begin work on supporting ECMAScript features when 
they are in stages 1 and 2 of the review process, but only formally release them when 
they reach stage 3.

TypeScript began offering experimental support for async functions in version 
1.6, released in September 2015, and offered full support in version 1.7, released 
in November 2015. TypeScript programmers could work with this syntax a full year 
ahead of official browser and Node.js support.

Use of the async/await keywords in TypeScript does not vary much from 
JavaScript, but we do have an advantage in the ability to be more explicit about which 
functions should return promises and which should return a resolved value or throw 
an error.



async/await in TypeScript | 513

One thing to be cognizant of when writing modern syntax in TypeScript is that most 
TypeScript code is transpiled to JavaScript for execution in a runtime, such as a web 
browser or Node.js. We need to understand the difference between transpilation and 
a polyfill. Transpilation will convert code from one syntax into another. In this case, 
we can write async/await code and transpile to an environment that only supports 
promise syntax. A polyfill adds missing language features. If our target environment 
doesn't even support promises, then transpiling async/await into promises won't do 
the trick. We will require a polyfill as well. 

Exercise 13.01: Transpilation Targets

In this exercise, we will use a contrived "Hello World!" example to demonstrate how 
TypeScript handles the transpilation of the async /await keywords:

Note 

The code files for this exercise can be found here: https://packt.link/NS8gY.

1. Navigate to the Exercise01 folder and install dependencies with 
npm install:

npm install

2. That will install TypeScript and the TS Node execution environment. Now, 
execute the program included by typing npx ts-node target.ts. The 
result will be as follows:

World!

Hello

World! printed before Hello. 

3. Open up target.ts and inspect the reason for this. This program creates 
a sayHello function, which internally creates a promise that resolves after 
one millisecond. You may notice that the program does exactly the same thing 
even if we remove the await keyword. That's OK. It's the different transpilation 
targets here that are interesting. When we run this program using TS Node, 
this will target the current Node.js version we're running. Assuming that's a 
recent version, async/await will be supported. Instead of doing that, let's try 
transpiling the code into JavaScript using TypeScript to see what happens. 

https://packt.link/NS8gY


514 | Async/Await in TypeScript

4. Now, open the tsconfig.json file and look at it:

{

  "compilerOptions": {

    "target": "es5",

    "module": "commonjs",

    "strict": true,

    "esModuleInterop": true,

    "skipLibCheck": true,

    "forceConsistentCasingInFileNames": true

  }

}

5. The target option being set to es5 means that TypeScript will attempt to 
produce code that conforms to the ECMAScript5 specification. So let's give that 
a try:

npx tsc

No output means that it executed successfully. 

6. Check out the target.js file that was produced by TypeScript. The size of 
this file may vary depending on your TypeScript version, but the transpiled code 
module may be more than 50 lines:

"use strict";

var __awaiter = (this && this.__awaiter) || function (thisArg, _
arguments, P, generator) {
    function adopt(value) { return value instanceof P ? value : new 
P(function (resolve) { resolve(value); }); }
    return new (P || (P = Promise))(function (resolve, reject) {

//….

sayHello();

console.log('World!');

Note

The complete code can be found here: https://packt.link/HSmyX.

We can execute the transpiled code by typing node target.js at the 
command prompt and we'll see that we get the same output as before.

https://packt.link/HSmyX


async/await in TypeScript | 515

Promises are not part of the ECMAScript5 specification, so to generate code 
that will work in an ECMAScript5 environment, the transpiler had to create __
awaiter and __generator functions to support promise-like functionality.

7. Let's switch our target to es6. Open tsconfig.json and change the target 
property to es6:

{

  "compilerOptions": {

    "target": "es6",

    "module": "commonjs",

    "strict": true,

    "esModuleInterop": true,

    "skipLibCheck": true,

    "forceConsistentCasingInFileNames": true

  }

}

8. Invoking the function with node target.js, we get exactly the same output 
as before. Now let's see what TypeScript did when it transpiled our source:

"use strict";

var __awaiter = (this && this.__awaiter) || function (thisArg, _
arguments, P, generator) {
    function adopt(value) { return value instanceof P ? value : new 
P(function (resolve) { resolve(value); }); }
    return new (P || (P = Promise))(function (resolve, reject) {

        function fulfilled(value) { try { step(generator.next(value)); 
} catch (e) { reject(e); } }
        function rejected(value) { try { step(generator["throw"]
(value)); } catch (e) { reject(e); } }
        function step(result) { result.done ? resolve(result.value) : 
adopt(result.value).then(fulfilled, rejected); }
        step((generator = generator.apply(thisArg, _arguments || 
[])).next());
    });

};

const sayHello = () => __awaiter(void 0, void 0, void 0, function* () 
{
    yield new Promise((resolve) => setTimeout(() => resolve(console.
log('Hello')), 1));
});

sayHello();

console.log('World!');



516 | Async/Await in TypeScript

The transpiled code is now 15 lines instead of over 50 because ECMAScript6 is 
much closer to supporting all the functionality we need than es5 is. The async/
await keywords are not supported in ECMAScript6, but promises are, so 
TypeScript is leveraging promises to make the outputted code more concise.

9. Now, let's change the target to esnext, run npx tsc one more time, and see 
what that output looks like:

"use strict";

const sayHello = async () => {

    await new Promise((resolve) => setTimeout(() => resolve(console.
log('Hello')), 1));
};

sayHello();

console.log('World!');

That's very similar to our source code! Since async/await are supported in the 
latest ECMAScript specification, there's no need to transform.

10. Older versions of TypeScript did not fully polyfill promises and async/await. 
Downgrade your TypeScript version with npm i -D typescript@2, set your 
compilation target back to es5, and then try transpiling:

npx tsc

target.ts:1:18 - error TS2705: An async function or method in ES5/ES3 
requires the 'Promise' constructor.  Make sure you have a declaration 
for the 'Promise' constructor or include 'ES2015' in your `--lib` 
option.

1 const sayHello = async () => {

                   ~~~~~~~~~~~~~

target.ts:2:13 - error TS2693: 'Promise' only refers to a type, but
is being used as a value here.

2 await new Promise((resolve) =>

              ~~~~~~~

target.ts:2:22 - error TS7006: Parameter 'resolve' implicitly has an 
'any' type.

2   await new Promise((resolve) =>



Syntax | 517

It doesn't work.

11. If you bump up to es6, it will still fail:

% npx tsc

target.ts:3:30 - error TS2345: Argument of type 'void' is not 
assignable to parameter of type '{} | PromiseLike<{}> | undefined'.

3     setTimeout(() => resolve(console.log('Hello')))

12. Install the latest version of TypeScript with npm i -D typescript@latest 
and then everything should work as before.

This aspect of TypeScript can be confusing for newcomers. TypeScript will not provide 
a polyfill for missing promises, but it will provide transformations to syntax that is 
functionally equivalent.

Choosing a Target

So how do we choose a compilation target? It's generally safe to use ES2017 or 
above unless you need to support outdated browsers, such as Internet Explorer, or 
deprecated Node.js versions. Sometimes, we have no choice but to support outdated 
browsers due to customer needs, but if we have any control over a Node.js runtime 
environment, it's advisable to update to a current, supported version. Doing this 
should allow us to use the latest TypeScript features.

Syntax
The two new keywords, async/await, are often found together, but not always. 
Let's look at the syntax for each of them individually.

async

The async keyword modifies a function. If a function declaration or function 
expression is used, it is placed before the function keyword. If an arrow function 
is used, the async keyword is placed before the argument list. Adding the async 
keyword to a function will cause the function to return a promise.

For example:

function addAsync(num1: number, num2: number) {

  return num1 + num2;

}



518 | Async/Await in TypeScript

Just adding the async keyword to this simple function will make this function return 
a promise, which is now awaitable and thenable. Since there's nothing asynchronous 
in the function, the promise will resolve immediately.

The arrow function version of this could be written as follows:

const addAsync = async (num1: number, num2: number) => num1 + num2;

Exercise 13.02: The async Keyword

This exercise illustrates how adding the async keyword to a function makes it return 
a promise:

Note 

The code files for this exercise can be found here: https://packt.link/BgujE.

1. Examine the async.ts file:

export const fn = async () => {

  return 'A Promise';

};

const result = fn();

console.log(result);

You might expect this program to log out A Promise, but let's see what actually 
happens when we run it:

npx ts-node async.ts

Promise { 'A Promise' }

2. The async keyword wrapped the response in a promise. We can confirm that by 
removing the keyword and running the program again:

npx ts-node async.ts

A Promise

3. Modifying our function with async is exactly equivalent to wrapping it in a 
promise. If we wanted to use promise syntax, we could write the program 
like this:

export const fn = () => {

https://packt.link/BgujE


Syntax | 519

  return Promise.resolve('A Promise');

};

const result = fn();

console.log(result);

4. Again, running the program written this way will log out the unresolved promise:

npx ts-node async.ts

Promise { 'A Promise' }

Since we're using TypeScript and return types can be inferred, modifying a function 
with async guarantees that TypeScript will always see the function as returning 
a promise.

The async keyword causes the function it modifies to be wrapped in a promise. 
Whether you choose to do that explicitly by declaring a promise or by using the 
async keyword is often a matter of taste and style. 

How can we resolve an async function? We'll come to await in a moment, but what 
about using then and the promise chaining we learned about in Chapter 12, Guide to 
Promises in TypeScript. Yes, that is also possible.

Exercise 13.03: Resolving an async Function with then

This exercise will teach you how to resolve an async function using then:

Note 

The code files for this exercise can be found here: https://packt.link/4Bo4c.

1. Create a new file called resolve.async.ts and enter the following code:

export const fn = async () => {

  return 'A Promise';

};

const result = fn();

result.then((message) => console.log(message));

https://packt.link/4Bo4c


520 | Async/Await in TypeScript

2. Execute this code by entering npx ts-node resolve.async.ts 
into your console and you'll see the expected text message logged, not an 
unresolved promise:

A Promise

Even though we never explicitly declared a promise object, the use of async has 
ensured that our function will always return a promise.

await

The second half of this combo perhaps has greater value. The await keyword 
will attempt to resolve any promise before continuing. This will get us out of then 
chaining and allow us to write code that appears to be synchronous. One great 
benefit of using await is if we want to assign the result of an asynchronous call to 
some value and then do something with the value. Let's look at how that's done in 
a promise:

asyncFunc().then(result => {

  // do something with the result

});

That can work fine and, in fact, this kind of syntax is used widely, but it breaks down a 
little if we need to do something tricky with chaining:

asyncFuncOne().then(resultOne => {

  asyncFuncTwo(resultOne).then(resultTwo => {

    asyncFuncThree(resultTwo).then(resultThree => {

      // do something with resultThree

    });

  });

});

But wait a minute. I thought promises were supposed to get rid of callback hell?! It's 
actually not that ideal for this kind of chaining. Let's try using await instead:

const resultOne = await asyncFuncOne();

const resultTwo = await asyncFuncTwo(resultOne);

const resultThree = await asyncFuncThree(resultTwo);

// do something with resultThree

Most programmers would agree that this syntax is much cleaner and, in fact, this is 
one of the primary reasons why async/await were added to the language.



Syntax | 521

Exercise 13.04: The await Keyword

This exercise will show you how to resolve a promise using await: 

Note 

The code files for this exercise can be found here: https://packt.link/mUzGI.

1. Create a file called await.ts and enter the following code:

export const fn = async () => {

  return 'A Promise';

};

const resolveIt = async () => {

  const result = await fn();

  console.log(result);

};

resolveIt();

Here we declare two async functions. One of them calls the other using 
await to resolve the promise and it should print out the string, rather than an 
unresolved promise. 

2. Run the file using npx ts-node await.ts and you should see the 
following output:

A Promise

Why did we need to wrap await in a second function? That is because normally, 
await cannot be used outside of an async function. We'll discuss the top-level 
await feature later in this chapter, which is an exception to this rule. What about 
mixing await with promises? This can certainly be done. 

https://packt.link/mUzGI


522 | Async/Await in TypeScript

Exercise 13.05: Awaiting a Promise

This exercise teaches you how you can use await with promises:

Note 

The code files for this exercise can be found here: https://packt.link/mMDiw.

1. Create a new file called await-promise.ts and enter the following code:

export const resolveIt = async () => {

  const result = await Promise.resolve('A Promise');

  console.log(result);

};

resolveIt();

2. Execute the code by entering npx ts-node await-promise.ts and you'll 
see the text output:

A Promise

3. A longer way to write this same code with a more explicit promise declaration 
would be:

export const resolveIt = async () => {

  const p = new Promise((resolve) => resolve('A Promise'));

  const result = await p;

  console.log(result);

};

resolveIt();

This code functions exactly the same:

4. Enter npx ts-node src/await-promise.ts to verify that you get the 
following output:

A Promise

https://packt.link/mMDiw


Exception Handling | 523

Syntactic Sugar

The preceding exercises on async functions and promises are simply two different 
ways of expressing the exact same operation in TypeScript. Likewise, using await 
and resolving a promise with then are equivalent. The async/await keywords are 
what's known as "syntactic sugar," or code structures that enable more expressive 
syntax without changing the behavior of the program.

This means it is possible and, at times, even advisable to mix async/await syntax 
with promises. A very common reason for doing this would be because you are 
working with a library that was written to use promises, but you prefer async/
await syntax. Another reason for mixing the two would be to handle exceptions 
more explicitly. We'll deal with exception handling in detail later in this chapter.

Exception Handling
We've been over how to turn then chaining into await, but what about catch? 
If a promise is rejected, the error will bubble up and must be caught in some way. 
Failing to catch an exception in the async/await world is just as damaging as failing 
to catch a promise rejection. In fact, it's exactly the same and async/await is just 
syntactic sugar on top of promises.

Failing to handle a rejected promise can lead to system failure where a program 
running in a web browser crashes, resulting in blank pages or broken functionality, 
thereby driving users away from your site. A failure to handle a rejected promise on 
the server side may cause a Node.js process to exit and a server to crash. Even if you 
have a self-healing system that attempts to bring your server back online, whatever 
job you were attempting to complete will have failed and frequently repeated restarts 
will make your infrastructure more expensive to run.

The most straightforward way to handle these errors is with try and catch blocks. 
This syntax is not unique to async/await and has been part of the ECMAScript 
specification since ECMAScript3. It is very simple and straightforward to use:

try {

  await someAsync();

} catch (e) {

  console.error(e);

}



524 | Async/Await in TypeScript

Just as you can catch an error thrown from any of several chained promises, you can 
implement a similar pattern here:

try {

  await someAsync();

  await anotherAsync();

  await oneMoreAsync();

} catch (e) {

  console.error(e);

}

There may be cases where finer-grained exception handling is required. It is possible 
to nest these structures:

try {

  await someAsync();

  try {

    await anotherAsync();

  } catch (e) {

    // specific handling of this error

  }

  await oneMoreAsync();

} catch (e) {

  console.error(e);

}

However, writing code such as this negates most of the benefits of the async/await 
syntax. A better solution would be to throw specific error messages and test for them:

try {

  await someAsync();

  await anotherAsync();

  await oneMoreAsync();

} catch (e) {

  if(e instanceOf MyCustomError) {

    // some custom handling

  } else {

    console.error(e);

  }

}



Exception Handling | 525

With this technique, we can handle everything in the same block and avoid nesting 
and messy-looking code structures.

Exercise 13.06: Exception Handling

Let's see how we can implement error handling in a simple example. In this exercise, 
we will intentionally and explicitly throw an error from an async function and see 
how that implements the operation of our program:

Note 

The code files for this exercise can be found here: https://packt.link/wbA8E.

1. Start by creating a new file called error.ts and entering the following code:

export const errorFn = async () => {

  throw new Error('An error has occurred!');

};

const asyncFn = async () => {

  await errorFn();

};

asyncFn();

2. This program will, of course, always throw an error. When we execute it by 
entering npx ts-node error.ts into the console, we can see quite clearly 
that the error is not being handled properly:

(node:29053) UnhandledPromiseRejectionWarning: Error: An error has 
occurred!
    at Object.exports.errorFn (/workshop/async-chapter/src/error.
ts:2:9)
    at asyncFn (/workshop/async-chapter/src/error.ts:6:9)

    at Object.<anonymous> (/workshop/async-chapter/src/error.ts:9:1)

    at Module._compile (internal/modules/cjs/loader.js:1138:30)

    at Module.m._compile (/workshop/async-chapter/node_modules/
ts-node/src/index.ts:858:23)
    at Module._extensions..js (internal/modules/cjs/loader.
js:1158:10)
    at Object.require.extensions.<computed> [as .ts] (/workshop/
async-chapter/node_modules/ts-node/src/index.ts:861:12)
    at Module.load (internal/modules/cjs/loader.js:986:32)

    at Function.Module._load (internal/modules/cjs/loader.js:879:14)

https://packt.link/wbA8E


526 | Async/Await in TypeScript

    at Function.executeUserEntryPoint [as runMain] (internal/modules/
run_main.js:71:12)
(node:29053) UnhandledPromiseRejectionWarning: Unhandled promise 
rejection. This error originated either by throwing inside of an 
async function without a catch block, or by rejecting a promise 
which was not handled with .catch(). To terminate the node process 
on unhandled promise rejection, use the CLI flag `--unhandled-
rejections=strict` (see https://nodejs.org/api/cli.html#cli_
unhandled_rejections_mode). (rejection id: 2)
(node:29053) [DEP0018] DeprecationWarning: Unhandled promise 
rejections are deprecated. In the future, promise rejections that are 
not handled will terminate the Node.js process with a non-zero exit 
code.

Notice the deprecation warning. Not only is this an ugly stack trace, at some 
point in the future, exceptions such as this one will cause the Node.js process to 
exit. We clearly need to handle this exception!

3. Fortunately, we can do so by simply surrounding the call with try and catch:

export const errorFn = async () => {

  throw new Error('An error has occurred!');

};

const asyncFn = async () => {

  try {

    await errorFn();

  } catch (e) {

    console.error(e);

  }

};

asyncFn();

4. Now, when we execute the program, we get a more orderly exception and stack 
trace logged:

Error: An error has occurred!

    at Object.exports.errorFn (/workshop/async-chapter/src/error.
ts:2:9)
    at asyncFn (/workshop/async-chapter/src/error.ts:7:11)

    at Object.<anonymous> (/workshop/async-chapter/src/error.ts:13:1)

    at Module._compile (internal/modules/cjs/loader.js:1138:30)

    at Module.m._compile (/workshop/node_modules/ts-node/src/index.
ts:858:23)



Exception Handling | 527

    at Module._extensions..js (internal/modules/cjs/loader.
js:1158:10)
    at Object.require.extensions.<computed> [as .ts] (/workshop/node_
modules/ts-node/src/index.ts:861:12)
    at Module.load (internal/modules/cjs/loader.js:986:32)

    at Function.Module._load (internal/modules/cjs/loader.js:879:14)

    at Function.executeUserEntryPoint [as runMain] (internal/modules/
run_main.js:71:12)

Of course, that message only appears because we explicitly logged it out. We 
could instead choose to throw a default value or perform some other operation 
instead of logging the error. 

5. It's always a good idea to log an error if the system isn't behaving correctly, but 
depending on your system requirements, you might instead write something 
like this:

const primaryFn = async () => {

  throw new Error('Primary System Offline!');

};

const secondaryFn = async () => {

  console.log('Aye aye!');

};

const asyncFn = async () => {

  try {

    await primaryFn();

  } catch (e) {

    console.warn(e);

    secondaryFn();

  }

};

asyncFn();

In this case, we just throw a warning and fall back to the secondary system 
because this program was designed to be fault-tolerant. It's still a good idea to 
log the warning so that we can trace how our system is behaving. One more 
variation of this for now. 



528 | Async/Await in TypeScript

6. Let's put our try and catch blocks at the top level and rewrite our program 
like this:

export const errorFN = async () => {

  throw new Error('An error has occurred!');

};

const asyncFn = async () => {

  await errorFN();

};

try {

  asyncFn();

} catch (e) {

  console.error(e);

}

7. This is the output that you get:

Error: Primary System Offline!

    at primaryFn (C:\Users\Mahesh\Documents\Chapter13_TypeScript\
Exercise13.06\error-secondary.ts:2:9)
    at asyncFn (C:\Users\Mahesh\Documents\Chapter13_TypeScript\
Exercise13.06\error-secondary.ts:11:11)
    at Object.<anonymous> (C:\Users\Mahesh\Documents\Chapter13_
TypeScript\Exercise13.06\error-secondary.ts:18:1)
    at Module._compile (internal/modules/cjs/loader.js:1063:30)

    at Module.m._compile (C:\Users\Mahesh\AppData\Roaming\npm-cache\_
npx\13000\node_modules\ts-node\src\index.ts:1056:23)       
    at Module._extensions..js (internal/modules/cjs/loader.
js:1092:10)
    at Object.require.extensions.<computed> [as .ts] (C:\Users\
Mahesh\AppData\Roaming\npm-cache\_npx\13000\node_modules\ts-node\src\
index.ts:1059:12)

    at Module.load (internal/modules/cjs/loader.js:928:32)

    at Function.Module._load (internal/modules/cjs/loader.js:769:14)

    at Function.executeUserEntryPoint [as runMain] (internal/modules/
run_main.js:72:12)
Aye aye!

You may assume that the program might work the same as putting try and 
catch inside asyncFn, but actually, it will behave the same as no error 
handling at all. That's because we aren't awaiting the function inside the 
try block. 



Top-Level await | 529

Top-Level await
Top-level await is a feature that allows the use of the await keyword at the module 
level, outside of any function. This allows a number of interesting patterns, such as 
waiting for a dependency to fully load by calling an asynchronous function before 
attempting to use it. Someday, top-level await may support some very exciting 
functional programming paradigms, but at the time of writing, it is still technically 
in preview mode, and so is not ready for widespread use. You may be reading this 
book at a time when top-level await is widely available and supported, and if so, you 
should definitely give it a look!

Writing code with top-level await is very straightforward. Here is a very short 
program that attempts to make use of it:

export const fn = async () => {

  return 'awaited!';

};

console.log(await fn());

This looks fine. Now let's see what happens when we try to execute it:

⨯ Unable to compile TypeScript:
src/top-level-await.ts:5:13 - error TS1378: Top-level 'await' expressions 
are only allowed when the 'module' option is set to 'esnext' or 'system', 
and the 'target' option is set to 'es2017' or higher.

5 console.log(await fn());

              ~~~~~

It's not supported, but it gives me some pointers. How can we make this work?

Top-level await requires NodeJS 14.8 or greater. This version of NodeJS entered LTS
(long-term service) in October of 2020 and so is still new at the time of this writing.
You can check your NodeJS version on the command line with node -v. If you aren't
running version 14.8 or greater, there are some good utilities like nvm and n that will
allow you to switch your version easily.

That, however, doesn't fix the problem. It seems that I will need to change my
tsconfig.json target property to es2017 or higher and set the module
property to esnext. Adding the module property means that I want to use ES
modules, which is a relatively new way to handle modules and is beyond the scope of
this book. To enable ES modules, I need to set the type property in my package.
json file to module.

530 | Async/Await in TypeScript

Now I've updated a couple of JSON files and am ready to try again:

TypeError [ERR_UNKNOWN_FILE_EXTENSION]: Unknown file extension ".ts" for /
workshop/async-chapter/src/top-level-await.ts
 at Loader.defaultGetFormat [as _getFormat] (internal/modules/esm/
get_format.js:65:15)
 at Loader.getFormat (internal/modules/esm/loader.js:113:42)

 at Loader.getModuleJob (internal/modules/esm/loader.js:243:31)

 at Loader.import (internal/modules/esm/loader.js:177:17)

It still isn't working. I'll need to do one more thing to make this work, and that is to
enable the experimental feature in Node.js and instruct TS Node to allow ES modules
(esm). This requires a longer command:

node --loader ts-node/esm.mjs top.ts

(node:91445) ExperimentalWarning: --experimental-loader is an
experimental feature. This feature could change at any time
(Use `node --trace-warnings ...` to show where the warning was created)

awaited!

But it works. Top-level await will likely become much easier and more intuitive
to work with in the months and years ahead, so make sure to check the latest
documentation for your runtime.

Promise Methods
In addition to the standard next and catch methods exposed by promises, there
are a number of other convenience methods, such as all, allSettled, any, and
race, that make working with promises nicer. How can they be used in the async/
await world? They can actually work together quite nicely. For example, here is a
use of Promise.all that employs then and catch. Given three promises, p1, p2,
and p3:

Promise.all([p1, p2, p3])

 .then(values => console.log(values))

 .catch(e => console.error(e));

There isn't any kind of awaitAll operator, so if we want to execute our promises
in parallel, we're still going to need to use Promise.all, but we can avoid chaining
then and catch if we choose to:

try {

 const values = await Promise.all([p1, p2, p3]);

 console.log(values);

Promise Methods | 531

} catch (e) {

 console.error(e);

}

In this case, we might feel like the code isn't improved by the addition of await, since
we've actually expanded it from three lines to six. Some may find this form more
readable. As always, it's a matter of personal or team preference.

Exercise 13.07: async/await in Express.js

In this exercise, we will build a small web application using the popular Express
framework. Although Express was written for the JavaScript language, typings
have been published for it and it is fully usable with TypeScript. Express is an
unopinionated, minimalist framework for building web applications. It's one of the
oldest and most popular frameworks in use today.

For our simple application, we'll start a web server on port 8888 and accept GET
requests. If that request has a name parameter in the query string, we will log the
name in a file called names.txt. Then we'll greet the user. If there's no name in the
query string, we log nothing and print out Hello World!:

Note

The code files for this exercise can be found here: https://packt.link/cG4r8.

Let's get started by installing the Express framework and typings.

1. Enter npm i express to install Express as a dependency and npm i -D @
types/express @types/node to install the typings that we'll need to
support TypeScript.

Remember the -D flag means that it's a devDependency that can be managed
differently from a production dependency, although its use is optional.

2. With our dependencies installed, let's create a file called express.ts. The first
thing to do is import express, create the app, add a simple handler, and listen
on port 8888:

import express, { Request, Response } from 'express';

const app = express();

app.get('/', (req: Request, res: Response) => {

https://packt.link/cG4r8

532 | Async/Await in TypeScript

 res.send('OK');

});

app.listen(8888);

This looks very much like your standard starter Express app, other than we're
giving types to the Request and Response objects. This is already enormously
useful as we'll be able to use IntelliSense and ascertain what methods we can call
on those objects without having to look them up.

Our requirements say that we need to listen for a name parameter
in the query string. We might see a request that looks like http://
localhost:8888/?name=Matt, to which we should respond
Hello Matt!.

The query string is in the Request object. If we delve into the typings, it is typed
as follows:

interface ParsedQs { [key: string]: undefined | string | string[] |
ParsedQs | ParsedQs[] }

This basically means that it is a hash of key/value pairs and nested key/value
pairs. In our case, we would expect to see a query object that looks like {
name: 'Matt' }. Thus, we can get the name attribute by using const {
name } = req.query;. Then we can respond to the request with something
like res.send(`Hello ${name ?? 'World'}!`);. In this case, we're
using the nullish coalesce operator (??) to say that we'll fall back to the World
string if the name variable has a nullish (null or undefined) value. We could also
use the fallback or logical OR operator, ||.

3. The updated code now looks like this:

import express, { Request, Response } from 'express';

const app = express();

app.get('/', (req: Request, res: Response) => {

 const { name } = req.query;

 res.send(`Hello ${name ?? 'World'}!`);

});

app.listen(8888);

Promise Methods | 533

4. One requirement is still missing. We need to log the name to a file if it exists.
To do that, we'll need to use the fs library from Node.js. We'll also use the
path library to resolve a path to the file we want to write to. First, add the
new imports:

import { promises } from 'fs';

import { resolve } from 'path';

5. Now we'll use the promises API from fs to asynchronously write to our log file.
Since this is a log, we want to append to it, not overwrite it on each request. We'll
use appendFile and write the name along with a newline character. We want
this operation to repeat before returning:

 if (name) {

 await promises.appendFile(resolve(__dirname, 'names.txt'),
`${name}\n`);
 }

That's almost it, but we should have a warning by now that our handler function
isn't properly async. All we need to do is add the async keyword to it.

6. The completed code looks like this:

import express, { Request, Response } from 'express';

import { promises } from 'fs';

import { resolve } from 'path';

const app = express();

app.get('/', async (req: Request, res: Response) => {

 const { name } = req.query;

 if (name) {

 await promises.appendFile(resolve(__dirname, 'names.txt'),
`${name}\n`);
 }

 res.send(`Hello ${name ?? 'World'}!`);

});

app.listen(8888);

534 | Async/Await in TypeScript

7. Run the program with npx ts-node express.ts and try hitting the URL
at http://localhost:8888?name=your_name a few times. Try hitting
that URL with different names and watch your log file increment. Here are a
few examples.

8. The following is the browser output for your_name:

Figure 13.1: Browser message for name = your_name

9. The following is the browser output for Matt:

Figure 13.2: Browser message for name = Matt

10. The following is the browser output for Albert Einstein:

Figure 13.3: Browser message for name = Albert Einstein

The names.txt file will increment as follows:

Figure 13.4: Log file

Promise Methods | 535

Exercise 13.08: NestJS

In contrast to Express, NestJS is a highly opinionated and fully featured framework
for building TypeScript applications. NestJS can be used to quickly bootstrap
an application. It provides out-of-the-box support for middleware, GraphQL,
and Websockets. It ships with ESLint, a dependency injection framework, a test
framework, and many other useful things. Some developers really enjoy working with
such a full-featured framework and others find all the boilerplate oppressive and
prefer to work with something more bare-bones, such as Express:

Note

The code files for this exercise can be found here: https://packt.link/blRq3.

Let's bootstrap a new NestJS application and give it a closer look.

1. NestJS applications can be generated by a command-line interface (CLI) that
can be installed via npm. Install that package globally:

npm i -g @nestjs/cli

2. When we use the CLI, it will generate a project by creating a new directory inside
the directory we entered the command into, so you may want to change the
directory to where you store your projects. Then, generate the project:

nest new async-nest

Here the project is named async-nest. You can name it differently. NestJS will
automatically install all dependencies and bootstrap a bare-bones application.

3. Change directory into your new application and start looking at the code. If you
pop open main.ts, you'll see async/await already in use. That module will
look something like this:

import { NestFactory } from '@nestjs/core';

import { AppModule } from './app.module';

async function bootstrap() {

 const app = await NestFactory.create(AppModule);

 await app.listen(3000);

}

bootstrap();

https://packt.link/blRq3

536 | Async/Await in TypeScript

NestJS is built on top of Express. This code will create a new Express application.
The internals of Express are not exposed to you as you write NestJS code, but
you always have the option to drop down to them if you need something not
supported by NestJS.

Let's go over a few useful commands that you can start using immediately. If you
type npm test (or npm t), you'll launch a test run by the Jest framework. This
test launches an instance of your application, invokes it, and then shuts it down
after verifying the expected response was received. NestJS ships with fixtures
that allow a light version of your app to be tested.

It's a great idea to continue adding unit and integration tests to your app as you
work on it. TypeScript can help you ensure code correctness, but only tests will
guarantee that your app is behaving as it should.

Another useful command is npm run lint. This will check your code style and
notify you of any issues with it by using the popular ESLint library.

4. Finally, you can type npm run start:dev to run the development server in
watch mode, which means the server will restart whenever you change a file.

5. Try running that now and navigate to http://localhost:3000 and you'll
see the Hello World message. If you open the file called app.service.ts
and change the message returned there, you can just refresh your browser and
you should see the message change.

Now that we've seen this simple Hello World app done in two very different
frameworks, let's add the same greeting and logging functionality that we did in
Exercise 13.07: async/await in Express.js.

6. To add the custom greeting based on the query param, let's open two files,
app.controller.ts and app.service.ts. Notice that app.service.
ts implements a getHello function that returns the string "Hello World!". We
will need to change this function to accept a name argument.

7. Add the name argument with the string type to the function's argument
list, and then change the return to a string template and say Hello. You'll have
something like this:

export class AppService {

 getHello(name: string): string {

 return `Hello ${name}!`;

 }

}

Promise Methods | 537

This is a simple refactor. If we check app.controller.ts, we'll see that our
IDE is now telling us that getHello needs an argument and we're not done yet.

In the Express application, we found our query parameter on the built-in
Request object. You could do the same thing in NestJS, but it's more common
and preferable to use a decorator. Decorators are special functions that wrap
other functions. They are sometimes called higher-order functions and are
similar to aspects of languages such as Java.

The decorator we want to use is @Query, which takes an argument of the
name of the query parameter and then binds that parameter to one of our
function arguments.

8. We can import that decorator from @nestjs/common. Then we add the
function argument to getHello and pass it through to the service call. One
more thing that's a good idea is to set a default so that we maintain backward
compatibility and don't print out Hello undefined if we fail to give an
argument. Adding the default may prompt a hint that you no longer need the
type annotation as it is trivially inferred from the default type. Go ahead and
remove it if you like:

import { Controller, Get, Query } from '@nestjs/common';

import { AppService } from './app.service';

@Controller()

export class AppController {

 constructor(private readonly appService: AppService) {}

 @Get()

 getHello(@Query('name') name: string = 'World'): string {

 return this.appService.getHello(name);

 }

}

9. The dev server should restart and now, if we browse to http://
localhost:3000/?name=Matt, we'll see Hello Matt!:

Figure 13.5: Browser message for name = Matt

538 | Async/Await in TypeScript

10. Now let's add the same logging functionality that we implemented in Express.

In a full-scale application, we'd probably want to build a separate logging service
class. For our purposes, we can implement that as a separate async method.
Add the method to app.service.ts and call it with await from getHello.
Test it to be sure that it's working correctly.

There are a few gotchas here. One is that NestJS is automatically transpiling and
serving your code from a folder called dist, so you'll find your names.txt file
in there once you start logging names. But the bigger trick here is that in order
to await the logging, we need to make getHello in app.service.ts into an
async method. This, in turn, will mean that getHello in app.controller.
ts must also be async. What will changing these methods to async do to
our app? Nothing! NestJS already knows how to resolve the promises before
returning the request.

11. One more thing to check out in this exercise is the unit test. Since we've set
a default value for the name attribute, the test should still work, right? Well
actually, it doesn't. Try running npm test and you'll see the problem. The issue
is that the test isn't expecting getHello to be async. That's OK. We can fix it by
making the test callback async to look like this:

 describe('root', () => {

 it('should return "Hello World!"', async () => {

 expect(await appController.getHello()).toBe('Hello World!');

 });

 });

The test should now pass. Try adding another test with an argument.

Exercise 13.09: TypeORM

TypeORM is an object relational mapper written in, and for, TypeScript. TypeORM
supports many popular databases, such as MySQL, Postgres, SQL Server, SQLite,
and even MongoDB and Oracle. TypeORM is often used in NestJS applications, so
in this exercise we will add a local in-memory SQLite database to work with our
NestJS application.

In this exercise, you will build another REST service to help us keep track of the
promises we make. Since Promise is the name of a built-in object in TypeScript,
let's use the term "pledge" so we can differentiate domain concepts from
language abstractions:

Promise Methods | 539

Note

The code files for this exercise can be found here: https://packt.link/ZywYh.

1. To get started, let's bootstrap a new NestJS project:

nest new typeorm-nest

2. NestJS has a powerful module system that lets us build out different functional
areas of our application in cohesive chunks. Let's create a new module
for pledges:

nest g module pledge

This command will generate a new module under the /pledge subdirectory.

3. We're also going to need a controller and a service for the pledge API, so let's
generate those using the NestJS CLI:

nest g controller pledge

nest g service pledge

4. Finally, we need to install the typeorm library, SQLite3, and NestJS integration:

npm i @nestjs/typeorm sqlite3 typeorm

TypeORM maps database tables to TypeScript entities by means of decorators
on plain objects.

5. Let's create pledge.entity.ts under /pledge and create our first entity:

import { Entity, PrimaryGeneratedColumn, Column } from 'typeorm';

@Entity()

export class Pledge {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 desc: string;

 @Column()

 kept: boolean;

}

https://packt.link/ZywYh

540 | Async/Await in TypeScript

For this entity, we're using a few specialized decorators, such as
PrimaryGeneratedColumn. These decorators can be very powerful but often
rely on underlying database functionality. Because SQLite can generate an ID for
our table, TypeORM is able to expose that in a declarative way with a decorator,
but if it couldn't, this wouldn't work. It's always good to check the documentation
before proceeding with a new implementation.

Now that we have an entity, we need to provide configuration to TypeORM about
what our database is and where to find it, as well as what entities we want to
map. For databases such as MySQL and Postgres, this might include a URI as
well as database credentials. Since SQLite is a file-based database, we will just
provide the name of the file we want to write.

Note that production database credentials should always be handled safely, and
the best practices for doing so are beyond the scope of this book, but suffice to
say that they shouldn't be checked into your version control.

6. Let's configure our application to use SQLite. We want to configure TypeORM at
the root of our application, so let's import the module into app.module.ts:

 TypeOrmModule.forRoot({

 type: 'sqlite',

 database: 'db',

 entities: [Pledge],

 synchronize: true,

 }),

7. Doing this will require a couple of more imports at the top of the module:

import { TypeOrmModule } from '@nestjs/typeorm';

import { Pledge } from './pledge/pledge.entity';

We're letting NestJS know that our application will use a SQLite database and
will manage the Pledge entity. By setting synchronize: true, we are
telling TypeORM to automatically create any entities that don't already exist
in the database when the application starts. This setting should NOT be used
in production as it may cause data loss. TypeORM supports migrations for
managing databases in production environments, another topic beyond the
scope of this book.

8. If we start our application now with npm run start:dev, it will start up and
we'll get a new binary file (the SQLite database) called db.

Promise Methods | 541

9. Before we can use the Pledge entity in our new module, we need to do a little
more boilerplate. Open up pledge.module.ts and add an import so that the
module looks like this:

import { Module } from '@nestjs/common';

import { TypeOrmModule } from '@nestjs/typeorm';

import { PledgeController } from './pledge.controller';

import { Pledge } from './pledge.entity';

import { PledgeService } from './pledge.service';

@Module({

 controllers: [PledgeController],

 imports: [TypeOrmModule.forFeature([Pledge])],

 providers: [PledgeService],

})

export class PledgeModule {}

This will allow the Pledge entity to be used by pledge.service.ts. Again,
NestJS has quite a lot of boilerplate, which may be jarring to developers who are
used to unopinionated ExpressJS workflows. This module system can help us to
isolate our application into functional areas. It's a good idea to understand the
benefits of a structured application before deciding whether a framework such
as NestJS is right for your application or team.

We can now start to build out our Pledge service. TypeORM supports both
Active Record, where an entity itself has methods for reading and updating, and
Data Mapper, where such functionality is delegated to a Repository object.
We will follow the Data Mapper pattern in this exercise.

10. To start, we will add a constructor to the Pledge service and inject the
repository to expose it as a private member of the class. Once we've done that,
we can start to access some of the repository methods:

import { Injectable } from '@nestjs/common';

import { Pledge } from './pledge.entity';

import { InjectRepository } from '@nestjs/typeorm';

import { Repository } from 'typeorm';

@Injectable()

export class PledgeService {

542 | Async/Await in TypeScript

 constructor(

 @InjectRepository(Pledge)

 private pledgeRepository: Repository<Pledge>,

) {}

 findAll(): Promise<Pledge[]> {

 return this.pledgeRepository.find();

 }

}

We've now exposed a findAll method, which will query the database for all
the Pledge entities and return them in an array.

11. In a production application, it can often be a good idea to implement pagination,
but this will do for our purposes. Let's implement some other methods:

import { Injectable } from '@nestjs/common';

import { InjectRepository } from '@nestjs/typeorm';

import { DeleteResult, Repository } from 'typeorm';

import { Pledge } from './pledge.entity';

@Injectable()

export class PledgeService {

 constructor(

 @InjectRepository(Pledge)

 private pledgeRepository: Repository<Pledge>,

) {}

 delete(id: number): Promise<DeleteResult> {

 return this.pledgeRepository.delete(id);

 }

 findAll(): Promise<Pledge[]> {

 return this.pledgeRepository.find();

 }

 findOne(id: number): Promise<Pledge> {

 return this.pledgeRepository.findOne(id);

Promise Methods | 543

 }

 save(pledge: Pledge): Promise<Pledge> {

 return this.pledgeRepository.save(pledge);

 }

}

We can get pretty far using just repository methods, which will generate SQL
queries for us, but it's also possible to use SQL or a query builder with TypeORM.

12. Implementing these methods in a service won't expose them to our API, so we
need to add matching controller methods in pledge.controller.ts. Each
controller method will delegate to a service method and NestJS will take care of
gluing all the pieces together:

import { Body, Controller, Delete, Get, Param, Post } from '@nestjs/
common';
import { DeleteResult } from 'typeorm';

import { Pledge } from './pledge.entity';

import { PledgeService } from './pledge.service';

@Controller('pledge')

export class PledgeController {

 constructor(private readonly pledgeService: PledgeService) {}

 @Delete(':id')

 deletePledge(@Param('id') id: number): Promise<DeleteResult> {

 return this.pledgeService.delete(id);

 }

 @Get()

 getPledges(): Promise<Pledge[]> {

 return this.pledgeService.findAll();

 }

 @Get(':id')

 getPledge(@Param('id') id: number): Promise<Pledge> {

544 | Async/Await in TypeScript

 return this.pledgeService.findOne(id);

 }

 @Post()

 savePledge(@Body() pledge: Pledge): Promise<Pledge> {

 return this.pledgeService.save(pledge);

 }

}

This controller will automatically inject the service and can then easily map
service methods to API endpoints using decorators and dependency injection.

13. Since we ran our application with npm run start:dev, it should hot reload
through all these changes.

14. Check the console and make sure there are no errors. If our code is correct, we
can use a REST client such as Postman to start sending requests to our service.
If we send a POST request with a payload such as {"desc":"Always lint
your code", "kept": true} to http://localhost:3000/pledge,
we'll get back a 201 Created HTTP response. Then we can issue GET requests
to http://localhost:3000/pledge and http://localhost:3000/
pledge/1 to see our record that was stored in SQLite.

In this exercise, we used NestJS and TypeORM to build a real web API that can create
and retrieve records from a SQLite database. Doing this isn't very different from using
a real production-grade database such as MySQL or PostgreSQL.

Activity 13.01: Refactoring Chained Promises to Use await

In this activity, we will refactor a function that chains promises together to use
await. You are supplied with a starter program that is meant to simulate the
creation of DOM elements for a website and render them one after another. In
reality, most sites will want to render in parallel, but it's possible that information
from one component might inform the rendering of another. It is good enough for
example purposes in any case:

Note

The code files for this activity can be found here: https://packt.link/L5r76.

1. Start by running the program as-is with npx ts-node src/refactor.ts.
You'll get each message in sequence.

https://packt.link/L5r76

Promise Methods | 545

2. Now, refactor the renderAll function to use async/await. You shouldn't
have to touch any other parts of the code to make this work. When your
refactoring is complete, run the program again and verify that the output
hasn't changed.

 The code for the starter program (refactor.ts) is as follows:

export class El {

 constructor(private name: string) {}

 render = () => {

 return new Promise((resolve) =>

 setTimeout(

 () => resolve(`${this.name} is resolved`),

 Math.random() * 1000

)

);

 };

}

const e1 = new El('header');

const e2 = new El('body');

const e3 = new El('footer');

const renderAll = () => {

 e1.render().then((msg1) => {

 console.log(msg1);

 e2.render().then((msg2) => {

 console.log(msg2);

 e3.render().then((msg3) => {

 console.log(msg3);

 });

 });

 });

};

renderAll();

546 | Async/Await in TypeScript

Once you run the program, you should get the following output:

header is resolved

body is resolved

footer is resolved

Note

The solution to this activity can be found via this link.

Summary
Asynchronous programming has come a long way in the past 10 years and the
introduction of async/await has continued to move it forward. Although not
perfect for every use case, this syntactic sugar has proven very popular with the
TypeScript community and has gained widespread acceptance in popular libraries
and frameworks.

In this chapter, we went over async/await syntax, how it came to be part of the
language, and how the use of this syntax is actually complimentary to promises. We
then toured several popular frameworks in use by TypeScript developers to see how
application developers use promises and asynchronous programming to develop
powerful web applications.

This concludes this book's study of language features. The next chapter will look at
React for building user interfaces using TypeScript.

Overview

In this chapter, we'll cover the React library and how to build user interfaces
enhanced with TypeScript. We'll look at state management solutions for
React applications and styling solutions. Then, we will use Firebase, a
serverless backend, to build a Hacker News-style application. By the end
of this chapter, you will be able to bootstrap React applications using the
Create React App command-line interface.

TypeScript and React

14

550 | TypeScript and React

Introduction
React is a dominant force in web and mobile user interface development. Although
it bills itself as "A JavaScript library for building user interfaces," what we often think of
as React goes well beyond the core library and includes a wide ecosystem of plugins,
components, and other tools. Many developers have chosen to specialize in React
and it's a popular topic for code academies. Unlike Angular, React was not developed
to use TypeScript and in fact there are a few other typing systems that some
developers use with React. However, the popularity of both React and TypeScript
made it inevitable that someone would want to marry the two, and writing React with
TypeScript has become a standard way to approach user interface development.

React was developed internally by Facebook for their own use and was open sourced
in 2013. In contrast to some of the more full-featured frameworks, React has always
styled itself as a view library and it relies on other libraries for necessary functionality,
such as state management, routing, and web requests.

React uses a declarative, component-based approach. Developers build components
that represent different UI elements. These components are typically reusable and
can be assembled in different ways to construct web views. Components can be
made up of other components and each individual component should be rather
simple. Thinking in terms of small, reusable components helps React developers
write clean, maintainable code and follow the Don't Repeat Yourself (DRY) principle.

Typing React
Prior to the dramatic rise in the popularity of TypeScript, React programmers either
went without any sort of type system or used libraries such as Flow or PropTypes.

Flow is another library developed by Facebook with the intent of adding types to
JavaScript. It has similar goals to TypeScript but takes a different route to achieve
them. Instead of being a superset of JavaScript, Flow uses comments and type
annotations checked by a language server, which are then removed by a transpiler
such as Babel. Since both libraries were developed by Facebook, it was common to
use them together, but the popularity of Flow has waned as TypeScript has emerged
as the type system of choice for web developers.

PropTypes is another library for enforcing type-checking. In this case, the library is
specifically for use with React and has the narrow focus of checking types on React
"props," or the parameters that are passed along with components.

Hello, React | 551

TypeScript in React

While it is technically feasible to use these libraries along with TypeScript, it's not a
good idea as they are all essentially trying to solve the same thing. If you're using
TypeScript, it's best to avoid Flow and PropTypes.

TypeScript provides many benefits to React programmers. We can achieve all the
same aims as the PropTypes library by typing our props using interfaces, and we also
get the full IntelliSense experience, which will let us learn more about components
and their lifecycles and even let us read developer comments, deprecation notices,
and so forth.

TypeScript will help ensure proper use of our components and give us that early
feedback loop that makes development much easier.

Hello, React
There are numerous books on React alone. This one chapter in a book on TypeScript
cannot cover all the topics relating to React. Readers who aren't already familiar
with React but wish to work with React professionally should seek sources beyond
this book. That said, to give a very brief overview of how React works, components
are written in some flavor of a compile-to-JavaScript language, such as TypeScript,
ReasonML, or even JavaScript. The compiled script will be embedded on a web page,
hooking into a page element such as a div:

import React from 'react';

import ReactDOM from 'react-dom';

export interface HelloProps {

 name: string;

}

class HelloComponent extends React.Component<HelloProps, {}> {

 render() {

 return <div>Hello {this.props.name}</div>;

 }

}

ReactDOM.render(

 <HelloTypeScript name="Matt" />,

 document.getElementById('root')

);

552 | TypeScript and React

This script will be loaded into a page with an element that has an ID of root and
will then print out Hello Matt. There are a lot of different ways to structure React
applications. Usually, they will be composed of many, many components, each of
which is put in a separate file.

React works by keeping a copy of the Document Object Model (DOM), the object
tree that translates JavaScript code to a rendered browser page, in memory. This
virtual DOM is updated frequently and changes are selectively applied to a render of
the actual web page. The virtual DOM allows for performance optimizations and is
designed to prevent slow renders or inefficient re-renders.

The Component
Inheritance patterns have existed in JavaScript since the beginning, first in the form
of prototypal inheritance and then class syntax since ES2015. Some programming
paradigms have recommended leveraging inheritance as the primary tool for building
complex applications. For example, if we were building a website that included a
profile page for a pet kitten, you might think about setting up an inheritance chain
such as KittenProfilePage extends FelineProfilePage extends
PetProfilePage extends ProfilePage extends Page. Indeed, some UI
frameworks have attempted to implement models like this. However, in practice, this
kind of thinking is quickly revealed as overly rigid, resistant to changing requirements,
and forcing you into strange patterns. For example, if we have implemented
whiskerCount in FelineProfilePage and we're now implementing
RodentProfilePage, do we copy and paste? Does RodentProfilePage inherit
from FelineProfilePage? Should we introduce WhiskeredPetProfilePage
to the chain in order to share whiskerCount according to our model?

That's not to say that modern web frameworks and libraries don't use inheritance.
They do! But generally, we are inheriting from a generic base component provided
by the library and our inheritance chains are very short. Instead of inheritance, we
focus on composition. Composition is the practice of building from many reusable
components, most of which have a more general purpose. This doesn't mean that
every component must be used more than once, but they are built in such a way that
they could be.

This approach is embraced wholeheartedly by React. The basic building block
of any React application is the component. There are a few classifications of
React component.

The Component | 553

Stateful Components

Stateful components keep track of their own state. Consider a dropdown that tracks
whether or not it is open and renders accordingly. Stateful components may use
the this keyword or enclose other variables for the purpose of keeping the state.
In React, the setState method may be used in stateful components. A stateful
component's state may be set during lifecycle events.

Typically, information about how a component should display can be kept within
that component. However, more complex data, such as a user profile, will often
require a state management solution that extends beyond the component. See State
Management in React later in this chapter.

Stateless Components

Stateless components never use the this keyword or call setState. They may
re-render based on props passed in but do not track any data themselves. All normal
lifecycle methods are available and stateless components are declared in the same
way as stateful components, just without anything that may alter the state.

A dropdown or accordion component could even be stateful if we decided to manage
that state in a central location. We typically won't do that for simple components, but
we might have some reason, such as an expand/collapse all feature.

Pure Components

Pure components are a special optimization for React. They are much like stateless
components in terms of how we use them, but they are declared differently (by
extending PureComponent). Pure components will only re-render when there is
a change to their state or props. This is in contrast to most components, which will
re-render when a parent component re-renders.

It's a good idea to experiment with pure components. They can dramatically speed up
the rendering of a React application but may introduce some unexpected behaviors
to those not used to working with them.

Higher-Order Components

Higher-order components (HOCs) are not a library structure but are rather a pattern
of wrapping one component with another without mutating the wrapped component.
A great example of an HOC is requiring users to authenticate prior to interacting with
our components.

554 | TypeScript and React

Consider the case of a site with a single login page and 99 pages of sensitive
information. Following a composition model, how can we implement this? We don't
want to inject the details of our authentication into every component we build. Doing
that would be sloppy and impractical. We don't want to have to wrap every render
with isUserAuthenticated. It would be easy to miss one. A better solution to
this problem is to use an HOC. Now our components can be written independently of
our authentication model.

HOCs are often described as pure functions – functions without side effects. Pure
functions make many appearances in React programming and are a good model to
strive for in general. HOCs are considered to be pure functions because they must
not alter the components they wrap. They are not, however, pure components; a
pure function is a programming concept while PureComponent is an actual part of
the React library.

HOCs are a great example of the concept of composition over inheritance. Going back
to the authentication example, an inheritance model would likely have us building
components that inherit from RequiresAuthenticationComponent, a base
component that has our auth model built in. However, with composition, we can build
our components independently of our authentication system, then apply an HOC
around them. Many programmers would see this as a better separation of concerns.

JSX and TSX
JSX is another innovation from Facebook. It refers to JavaScript enhanced with XML
and practically it is JavaScript with HTML templates embedded into it. The following is
an example of its use:

render() {

 return <div>Hello {this.props.name}</div>;

}

This is a function that returns an HTML template. We must use JSX to do this.
Normally, this would result in a syntax error as this is not a quoted string nor is it any
recognizable object or syntax in TypeScript. JSX allows us to mix our HTML templating
in with our code. Some earlier view libraries would use one file for source code and
another for templating. This was often confusing to programmers as they needed to
flip back and forth between the two.

JSX and TSX | 555

It is possible to write React without using JSX but that is rarely done and won't be
covered in this book. Some other languages, such as Vue, use JSX as well.

When we want to write TypeScript in JSX, we use the .tsx file extension instead of
.jsx. Technically, this is still JSX. To include TypeScript in JSX, all we need to do is
set the file extension accordingly and set the jsx property in our tsconfig.json
file to let TypeScript know we're using JSX. Valid values for that property are react,
react-native, and preserve. The first two are for targeting a web browser or
mobile app, respectively, and the last means that some other transpilation step will
handle the JSX.

JSX is not a part of the JavaScript or TypeScript language, but just a language
extension that needs to be transpiled. You wouldn't be able to run JSX in most
web browsers.

Exercise 14.01: Bootstrapping with Create React App

Create React App (create-react-app) is a library from Facebook that helps
developers quickly bootstrap a new React application. It includes a library called
react-scripts that helps abstract a lot of the tooling that has become standard
in web development, like a linter, a test framework, and a bundler (webpack). All of
those dependencies are managed by Create React App and react-scripts.

In this exercise, we'll bootstrap a new React application using Create React App.
We'll run the application, examine the developer experience, and make some minor
edits, then see components reload. We'll look at the production build and how that's
different from the development build. Then we'll check out the built-in tests:

Note

The code for this exercise can be found here: https://packt.link/hMs3v.

1. Create React App ships with a few options and has included a TypeScript option
since 2018. It's very easy to create a new application. We don't even need to
install anything but can use npx to run the latest version of Create React App
and start an application. Enter the command line and find a directory where
you'd like to create your application and type this:

npx create-react-app my-app --template typescript

https://packt.link/hMs3v

556 | TypeScript and React

2. Create React App will download from the internet and set up your application,
then install dependencies. Create React App will use the yarn package manager
(also from Facebook) if you have it installed, otherwise it will use npm. It doesn't
make very much difference which of these you use for the purposes of this
book as they provide the same functionality. If you have an old version of yarn
installed, you may need to update it (npm i -g yarn). If you prefer not to use
yarn, all of these exercises should work fine without it:

npx create-react-app my-app --template typescript

npx: installed 67 in 4.26s

Creating a new React app in /Users/mattmorgan/mine/The-TypeScript-
Workshop/Chapter14/Exercise01/my-app.

Installing packages. This might take a couple of minutes.

Installing react, react-dom, and react-scripts with cra-template-
typescript...

yarn add v1.22.10

[1/4] 🔍 Resolving packages...

[2/4] 🚚 Fetching packages...

// […]

warning " > @testing-library/user-event@12.6.2" has unmet peer
dependency "@testing-library/dom@>=7.21.4".
success Uninstalled packages.

✨ Done in 10.28s.

Success! Created my-app at /Users/mattmorgan/mine/The-TypeScript-
Workshop/Chapter15/Exercise15.01/my-app
Inside that directory, you can run several commands:

 yarn start - Starts the development server.

 yarn build - Bundles the app into static files for production.

 yarn test - Starts the test runner.

 yarn eject Removes this tool and copies build dependencies,
configuration files and scripts into the app directory. If you do this,
you can't go back!

We suggest that you begin by typing:

 cd my-app

 yarn start

Happy hacking!

JSX and TSX | 557

Note

For ease of presentation, only a section of the output is displayed here.

3. The output of npx create-react-app will tell you what to do next. cd into
the directory that was created, and type yarn start or npm start. Your
application will automatically open in a browser window:

cd my-app

yarn start

You will see the following output:

Compiled successfully!

You can now view my-app in the browser.

Local: http://localhost:3000

On Your Network: http://192.168.7.92:3000

Note that the development build is not optimized.

To create a production build, use yarn build.

4. If you navigate to http://localhost:3000, you will see the following:

Figure 14.1: Screenshot of my-app in the browser

558 | TypeScript and React

5. Examine the source code that was generated in your favorite IDE. You can find
an index.tsx file that attaches the React application to a dom node and
an App.tsx file, which is the main component in your application so far. Try
adding a new message or creating some new components as shown here:

Figure 14.2: Screenshot of my-app after adding App.tsx

6. When you type npm start, your application will run in development mode
with hot reloads (meaning your page refreshes when you make a change).
For running in production, that's obviously not necessary. You can see what a
production build looks like by running yarn build or npm run build. You'll
see some output that tells you exactly what is happening and the transpiled
JavaScript will be put in a build directory. Open the directory and look at the
files there. That's what a production React application looks like.

7. Use Ctrl + C to stop your local server and try yarn build or npm run build
to run the production build.

JSX and TSX | 559

8. Production React applications often run on static servers but they can also run
on web servers. The concept of server-side rendering in React is beyond the
scope of this book but is another topic you may be interested in. Your build
should produce a shortened URL that will take you to an article that includes
more information about deploying React applications to production:

yarn build

yarn run v1.22.10

react-scripts build

Creating an optimized production build...

Compiled successfully.

File sizes after gzip:

 41.2 KB build/static/js/2.311d60e9.chunk.js

 1.39 KB build/static/js/3.73a1c5a5.chunk.js

 1.17 KB build/static/js/runtime-main.f12bc2d0.js

 615 B build/static/js/main.fe0fc6c6.chunk.js

 531 B build/static/css/main.8c8b27cf.chunk.css

The project was built assuming it is hosted at /. You can control this with the
homepage field in your package.json.

9. The build folder is ready to be deployed. You may serve it with a static server:

yarn global add serve

serve -s build

Find out more about deployment here:https://cra.link/deployment

✨ Done in 7.88s.

10. Type yarn test or npm t (short for npm test). The Jest framework will run
a test against your application. The test is very simple but can get you started
writing more tests. It's a good idea to write tests for your components as the
tests will give you confidence that your application is working. Writing testable
code builds strong programming habits:

PASS src/App.test.tsx

 ✓ renders learn react link (23 ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 2.295 s

560 | TypeScript and React

Ran all test suites related to changed files.

Watch Usage

 › Press a to run all tests.

 › Press f to run only failed tests.

 › Press q to quit watch mode.

 › Press p to filter by a filename regex pattern.

 › Press t to filter by a test name regex pattern.

 › Press Enter to trigger a test run.

And with that, we've covered the basics of Create React App. We've learned how
we can quickly bootstrap a new application, looked at the developer experience
with hot reloading, and also how to run production builds and tests.

Although Create React App gives you a lot of stuff, it's actually just the tip of the
iceberg of what we'll see in the coming sections. For example, our application has
no way to handle different kinds of requests or different pages. We don't have any
routing. We also have no place to store data and no way to interact with any kind of
backend. We'll delve into those concepts in the coming sections.

Routing
React doesn't include a solution for routing by default. That's because at its heart it
is a view library. Some applications have no need for routing, but most will want the
ability to render multiple pages at the very least. Some applications have complicated
routing requirements that may involve "deep linking" or linking directly to a particular
document. Request or query variables in a URL may contain some identifier that
connects to a particular user's record.

While there are some alternatives, most React applications that use routing use
React-Router, which is the official Facebook solution.

Exercise 14.02: React Router

In this exercise, we'll bootstrap another application with Create React App and then
enhance it with React Router to be able to support multiple views and navigate
between them:

Note

The code for this exercise can be found here: https://packt.link/EYBcF.

https://packt.link/EYBcF

Routing | 561

1. To start, go to the command line where you can create another application:

npx create-react-app router-app --template typescript

cd router-app

2. To add React Router, let's install the library and typings. If you are not using
yarn, yarn add commands can be replaced with npm install:

yarn add react-router-dom

yarn add -D @types/react-router-dom

% yarn add react-router-dom

yarn add v1.22.10

[1/4] 🔍 Resolving packages...

[2/4] 🚚 Fetching packages...

[3/4] 🔗 Linking dependencies...

warning " > @testing-library/user-event@12.6.2" has unmet peer
dependency "@testing-library/dom@>=7.21.4".
[4/4] 🔨 Building fresh packages...

success Saved lockfile.

success Saved 8 new dependencies.

info Direct dependencies

└─ react-router-dom@5.2.0

info All dependencies

├─ hoist-non-react-statics@3.3.2

├─ mini-create-react-context@0.4.1

├─ path-to-regexp@1.8.0

├─ react-router-dom@5.2.0

├─ react-router@5.2.0

├─ resolve-pathname@3.0.0

├─ tiny-warning@1.0.3

└─ value-equal@1.0.1

✨ Done in 4.86s.

% yarn add -D @types/react-router-dom

yarn add v1.22.10

[1/4] 🔍 Resolving packages...

[2/4] 🚚 Fetching packages...

[3/4] 🔗 Linking dependencies...

warning " > @testing-library/user-event@12.6.2" has unmet peer
dependency "@testing-library/dom@>=7.21.4".
[4/4] 🔨 Building fresh packages...

562 | TypeScript and React

success Saved lockfile.

success Saved 2 new dependencies.

info Direct dependencies

└─ @types/react-router-dom@5.1.7

info All dependencies

├─ @types/react-router-dom@5.1.7

└─ @types/react-router@5.1.11

✨ Done in 4.59s.

Now we can start the application with yarn start or npm start. We'll
be editing files as we add these routes and our application will just restart
automatically, which makes for a nice developer experience.

We could begin by adding the router, but we currently have nothing to route
to, so let's start by adding a few new components. Since components are the
building blocks of a React application, a component can be a page. That same
component could also be part of another page.

3. Let's create a /src/pages subdirectory in our application to hold the new
page components. In the pages subdirectory, create Add.tsx,Home.tsx,
SignIn.tsx, and Signup.tsx.

To start, we'll create some very simple components to route between. In a later
section in this chapter, we'll discuss the creation of function components.

4. Create Add.tsx using the following code:

import React from 'react';

const Add = () => <div>Add a new story</div>;

export default Add;

5. Create Home.tsx using the following code:

import React from 'react';

const Home = () => <div>You are home!</div>;

export default Home;

Routing | 563

6. Create SignIn.tsx using the following code:

import React from 'react';

const SignIn = () => <div>Sign in here</div>;

export default SignIn;

7. Create SignUp.tsx using the following code:

import React from 'react';

const SignUp = () => <div>Sign up here</div>;

export default SignUp;

These basic components only return some JSX, but they are sufficient to route
between. Note that without a router, we could include the components in our
main App.tsx, but we cannot navigate between pages in a traditional web app
sense. That is the responsibility of the router.

8. So, at this point, we have components that we can't yet interact with. Let's add
routing to our App.tsx.

React Router exposes a few different router types that have mostly narrow use
cases. We will focus on BrowserRouter. To get started, we will add a few
imports to App.tsx:

import { BrowserRouter as Router, Switch, Route } from 'react-router-
dom';

By convention, we are renaming BrowserRouter to Router in our import.
We will also use Switch, which gives us a declarative way to shift between
different components based on the route, and Route, which lets us define the
component route.

Adding our first (default) route is pretty simple. Before doing that, make sure
your local dev environment is running with npm start. You should see the
spinning React logo in a web browser running at http://localhost:3000.

564 | TypeScript and React

9. Now let's use the other components to build out the first route. We'll remove all
the JSX that the App.tsx component is currently returning and replace it with
the routing:

function App() {

 return (

 <Router>

 <Switch>

 <Route exact path="/" component={Home} />

 </Switch>

 </Router>

);

}

You will need to import the Home component:

import Home from './pages/Home';

Your IDE may prompt you to automatically import Home as you are typing.

10. If you've got everything working correctly, your view will refresh and you'll see
the React logo replaced with You are home!.

Let's add some additional routes:

<Route path="/add" component={Add} />

<Route path="/signin" component={SignIn} />

<Route path="/signup" component={SignUp} />

11. Our Home route sets the exact property. Routing in React uses a regular
expression to match the path starting from the leftmost part of the path. This
allows for variable query and route parameters to be matched. The exact prop
forces an exact match and ensures "/add" doesn't match to "/".

12. Now we can test the routing. Type http://localhost:3000/add in your
browser. You should get the message Add a new story. Try visiting the
other routes.

13. Of course, it isn't very natural to expect users to manually type all the URLs
in a browser to navigate your site. Let's add some links. We can import Link
from react-router. This component will create navigation links that
connect to your application routing. Because of this, Link must always be used
within Router.

Routing | 565

Link wraps some text and has a to prop, which should have the route you
want to link to:

<Link to="/">home</Link>

With that, it's pretty easy to add some navigation elements:

<nav>

 <Link to="/">home</Link>

 <Link to="add">add</Link>

 <Link to="signin">signin</Link>

 <Link to="signup">signup</Link>

</nav>

This should give us a nice way to move between our pages. However, pasting a
bunch of extra JSX into App.tsx isn't a great way to write React, so let's write a
NavBar component instead.

14. Add a components directory under src. We'll use this directory to hold
components that aren't tied to routes:

import React from 'react';

import { Link } from 'react-router-dom';

const NavBar = () => (

 <nav>

 <Link to="/">home</Link>

 <Link to="add">add</Link>

566 | TypeScript and React

 <Link to="signin">signin</Link>

 <Link to="signup">signup</Link>

 </nav>

);

export default NavBar;

15. Now we can simply use this component in App.tsx. Here's the
finished component:

import './App.css';

import React from 'react';

import { BrowserRouter as Router, Route, Switch } from 'react-router-
dom';

import NavBar from './components/NavBar';

import Add from './pages/Add';

import Home from './pages/Home';

import SignIn from './pages/SignIn';

import SignUp from './pages/SignUp';

function App() {

 return (

 <Router>

 <NavBar />

 <Switch>

 <Route exact path="/" component={Home} />

 <Route path="/add" component={Add} />

 <Route path="/signin" component={SignIn} />

 <Route path="/signup" component={SignUp} />

 </Switch>

 </Router>

);

}

export default App;

React Components | 567

16. Check your browser now and you should see the simple navigation and be able
to use it to shift between views:

Figure 14.3: List of folders in the finished component

Adding routing to a React application is easy to do. In this exercise, we showed how
to add routes, navigate between them, and also how to share a common component
across several routes. One of the real strengths of React is the ability to share
components among other components and create reuse patterns that make putting
together the building blocks of an application easy.

Routing can also include path and query parameters. Be sure to read the React
Router documentation for how to add parameters to your routes.

React Components
Now let's dig into how these components work. There are several different ways to
declare a component in React. You even have the choice to use JSX or not. This book
will focus on creating components with function expressions, but we'll go over a few
other patterns, so you'll know them when you see them.

Class Components

This style of component follows a classical (that is, relating to the programming
concept of classes) pattern of component declaration. Many older examples will
use class components, but they have fallen largely out of fashion due to being
more verbose than other patterns. To create a class component, we import the
Component class from React and extend it while creating our own class:

import React, { Component } from 'react';

interface Comp1Props {

568 | TypeScript and React

 text: string;

}

export default class Comp1 extends Component<Comp1Props> {

 render() {

 const { text } = this.props;

 return <div>{text}</div>;

 }

}

It's a good idea to create your own interface for props and the same can be done for
state – for example:

import React, { Component } from 'react';

interface Comp1Props {

 text: string;

}

interface Comp1State {

 value: boolean

}

export default class Comp1 extends Component<Comp1Props, Comp1State> {

 render() {

 ...

}

Props are accessed via this.props and state via this.state and this.
setState. This style of programming may seem comfortable and familiar to those
with a background in Java or C++, but the this keyword can be troubling to work
with in TypeScript and the class-focused declaration style doesn't fit well with some
of the functional programming concepts in React, so other patterns have gained
popularity in recent years. For more information about the this keyword, see
Chapter 3, Functions.

React Components | 569

Function Components (Function Declaration)

It's far more common for React components to be written as function components.
The same simple component from the previous section, rewritten as a function
component, could look like this:

import React from 'react';

interface Comp2Props {

 text: string;

}

export default function Comp2({ text }: Comp2Props) {

 return <div>{text}</div>;

}

We've shaved off a couple of lines of code and come to something a bit more like a
functional programming style. You won't use this very often when using function
components, nor do you need to actually import the Component class. Props are
simply the arguments passed into the function. State can't be handled directly here,
but we will see how to manage that in the next section on React Hooks.

Function Components (Function Expression with Arrow Functions)

This book prefers this pattern as a very intuitive and declarative way of creating
components. You can even create pure function components as a one-liner. First,
let's write the same component again:

import React from 'react';

interface Comp3Props {

 text: string;

}

const Comp3 = ({ text }: Comp3Props) => <div>{text}</div>;

export default Comp3;

570 | TypeScript and React

Scoping rules do not allow the const and default keywords to be on the same
line (avoiding absurd code such as export default const a=1, b=2, c=3;,
which would otherwise be allowed), so we need to export the component on a
separate line.

If we really want to slim the code down, we could write it like this:

import React from 'react';

export const Comp3 = ({ text }:{ text: string }) => <div>{text}</div>;

This is a pure function component that is stateless and has no other side effects. Most
programmers prefer to use an interface for the props as it helps with readability, but
that declaration can be done inline as in the preceding snippet ({ text: string
}) if we really want to make the component small.

No JSX

Any of the preceding methods can use createElement. Here's a quick example of
why you probably don't want to use that:

import { createElement } from 'react';

interface Comp4Props {

 text: string;

}

const Comp4 = ({ text }: Comp4Props) => createElement('div', null, text);

export default Comp4;

The arguments to createElement are the element tag to create, its props,
and its children. It doesn't take long to realize that creating nested elements with
createElement would be substantially more difficult than using JSX, so JSX is almost
always used. If we decide not to use JSX, we can use the .ts file extension instead of
.tsx. This is a very small benefit!

React Components | 571

State in Function Components

This book recommends function components over class components. We cannot
access state directly in a function component, nor is there a setState method to
call. However, we do have access to the excellent useState and so we hardly miss
this or setState at all.

useState is part of React Hooks, available since React version 16.8. React Hooks
introduced several functions that greatly enhance working with function components.
Let's start by coming up with a simple component that uses the class constructor,
this, and setState:

import React, { Component } from 'react';

interface Comp1Props {

 text: string;

}

interface Comp1State {

 clicks: number;

}

export default class Comp1 extends Component<Comp1Props, Comp1State> {

 constructor(props: Comp1Props) {

 super(props);

 this.state = { clicks: 0 };

 }

 handleClick = () => {

 this.setState({ clicks: this.state.clicks + 1 });

 };

 render() {

 const { text } = this.props;

 return (

 <div>

 {text}

 <div>

572 | TypeScript and React

 <button onClick={this.handleClick}>{this.state.clicks} clicks</
button>
 </div>

 </div>

);

 }

}

We've defined interfaces for props and state as well as an event handler to count up
the clicks. We are using setState to increment our counter in the state. It looks
a bit weird that handleClick uses an arrow function while render does not,
yet they both refer to this. This is due to the strangeness of interpreting this
references in TypeScript. Without an arrow function, handleClick will not find
our component when accessing this but will instead get an undefined reference.
This sort of issue has cost a lot of developers a lot of time and so framework authors
have sought after solutions that simply avoid language constructs that so many find
confusing. Let's rewrite this component as a function component:

import React, { useState } from 'react';

interface Comp2Props {

 text: string;

}

export default function Comp2({ text }: Comp2Props) {

 const [clicks, setClicks] = useState(0);

 const handleClick = () => setClicks(clicks + 1);

 return (

 <div>

 {text}

 <div>

 <button onClick={handleClick}>{clicks} clicks</button>

 </div>

 </div>

);

}

This function component does exactly the same thing as the class component. Let's
look at the differences. For one, we're starting to see substantial savings in terms of
lines of code. The function component is 18 lines while the class component is 30.

State Management in React | 573

Next, we are avoiding the troublesome this keyword. We are also avoiding having
to define an interface for the state. It may seem counterintuitive, but this is actually
a good thing. In class components, state, as a single object, may often combine
several unrelated things into one state. State is really just a place for any and all local
variables. By declaring each of these variables independently from the others, we can
establish much better programming paradigms.

The useState function takes an argument, which is the default state, and returns
an array of const pointing to the value and a method used to update the state.
The stateful value is const because it cannot be updated without re-rendering
our component. If we call setClicks, the component will re-render with a newly
initialized const clicks. You can have several useState calls in a single function
component. Each one manages its own part of the state independently.

Your state can still be strongly typed when using useState. In our case,
TypeScript infers the type of number for clicks, based on how we've initialized
it with a number. However, if we wanted to, we could add a type hint such
as useState<number>(0) or useState<MyType>(0) to handle more
complex types.

State Management in React
State is a bit of an overloaded term in the UI development world. Thus far, the state
we've been referring to is a local state inside of a component. Going back to the clicks
example, while that value could be passed to a child component via the usual means
(as a prop), there's no easy way to pass the value to a parent component or some
distant "cousin" component elsewhere in the DOM tree.

The management of global state is a problem much older than React. It's always been
fairly simple to create some kind of widget that can internally manage its own data,
but that widget gets extremely complicated when new requirements are introduced
that connect the widget's data to other parts of an application. Often applications
were written in an imperative fashion with hand-coded "events" to try to propagate
data through some global scope. This approach can work, but bugs are common and
managing change can be extremely difficult. A likely outcome of an ad hoc approach
to state management is unmaintainable spaghetti code.

574 | TypeScript and React

React does have a "brute force" approach to state management, which is that all
data is stored in some parent component and passed (along with any necessary
methods to update the data) to all children and all of their descendants. Doing this
in a complex application can be really challenging, with long lists of props that must
always be passed through. For this reason, most developers choose another solution.

Redux is a popular library introduced in 2015 that aimed to solve the problem of state
management by introducing functional programming concepts such as the reducer.
The concept behind Redux is that an immutable state is stored somewhere in the
application. Different parts of the application can dispatch actions that will produce a
new state to replace the old one. Because each version of the immutable state can be
stored and is immutable (meaning nothing outside this framework can change it), it
is possible to time-travel through different application states, something that can be
very useful for development but may also have use in production applications, such
as an "undo" feature. Redux can be used with almost any web application and is not
tied to React, but it's very common to find the two of them together in an application.

Redux is powerful but receives criticism for being overly complex and using a lot
of boilerplate. It also typically requires additional libraries (such as redux-saga
or redux-thunk) to make asynchronous calls to a backend server. All of these
libraries can be very intimidating to newcomers and even challenging to use for
experienced programmers.

React Hooks provides a simpler way using React context. React context allows us to
set root-level data stores and actions and make them available to components deep
in the DOM tree without having to pass props all the way through (sometimes known
as "prop drilling"). The difference between Redux and context is tantamount to going
from class components and setState to function components and useState. Like
the prior example, we are moving from a single state object and complexity managing
it to multiple contexts that can be managed more simply.

State Management in React | 575

Exercise 14.03: React Context

Let's get some experience with context. For this exercise, you can either bootstrap
a new create-react-app instance or use the one from the previous sections.
In this exercise, we'll create two new components and one provider. Technically,
providers are components too, but they are actually specialized HOCs:

Note

The code for this exercise can be found here: https://packt.link/rUfr4.

1. Let's start with the provider. Create /components and /providers
subdirectories under your /src directory. In the /providers directory, create
a file called ClickProvider.tsx. This component will manage our clicks and
provide its context to descendants.

2. Unlike most components, a provider will export a context and a provider. Some
guides will create Context and then export Consumer and Provider. Rather
than using Consumer, we will use useContext, another React Hook. When
using useContext, the Consumer object is not referenced directly:

export const ClickContext = createContext();

3. That's the basic signature for creating Context. We will need to add a type hint
and a default value. Let's come to that in a moment after adding Provider:

export const ClickProvider = ({ children }) => {

 const [clicks, setClicks] = useState(0);

 return (

 <ClickContext.Provider value={{ clicks, setClicks }}>

 {children}

 </ClickContext.Provider>

);

};

This component takes some props, which are child nodes. It uses useState to
create a clicks value and an update function, then it returns Provider with
the value and the function.

https://packt.link/rUfr4

576 | TypeScript and React

4. This is the basic provider we need, but it's not yet good TypeScript. We need to
add some more types:

interface Clicks {

 clicks: number;

 setClicks: Dispatch<SetStateAction<number>>;

}

interface ContextProps {

 children: ReactNode;

}

5. ClickContext will be the type for the value our Provider returns and
ContextProps works as a basic prop type for any HOC with children. With
these types, we can fill out the rest of Provider:

import React, {

 createContext,

 Dispatch,

 ReactNode,

 SetStateAction,

 useState,

} from 'react';

interface Clicks {

 clicks: number;

 setClicks: Dispatch<SetStateAction<number>>;

}

interface ContextProps {

 children: ReactNode;

}

export const ClickContext = createContext<Clicks>({

 clicks: 0,

 setClicks: () => {},

});

export const ClickProvider = ({ children }: ContextProps) => {

 const [clicks, setClicks] = useState(0);

 return (

State Management in React | 577

 <ClickContext.Provider value={{ clicks, setClicks }}>

 {children}

 </ClickContext.Provider>

);

};

6. Now let's add Clicker.tsx and Display.tsx in the
components directory:

import React, { useContext } from 'react';

import { ClickContext } from '../providers/ClickProvider';

const Clicker = () => {

 const { clicks, setClicks } = useContext(ClickContext);

 const handleClick = () => setClicks(clicks + 1);

 return <button onClick={handleClick}>Add a click</button>;

};

export default Clicker;

7. This component renders a button and uses the setClicks method
from Provider:

import React, { useContext } from 'react';

import { ClickContext } from '../providers/ClickProvider';

const Display = () => {

 const { clicks } = useContext(ClickContext);

 return <div>{clicks}</div>;

};

export default Display;

Display.tsx just grabs the clicks value from the context and displays it.

8. Now that we have a couple of simple components that work with our provider,
let's add them to App.tsx and see how our app looks.

578 | TypeScript and React

9. Delete the default code from App.tsx and replace it with Provider and the
new components:

import './App.css';

import React from 'react';

import Clicker from './components/Clicker';

import Display from './components/Display';

import { ClickProvider } from './providers/ClickProvider';

function App() {

 return (

 <ClickProvider>

 <Clicker />

 <Display />

 </ClickProvider>

);

}

export default App;

Run the app and click the button several times. The counter will increment.
It's not that amazing to make a counter increment on a website, but our
components are nicely decoupled and this approach will scale well to much
larger apps:

Figure 14.4: App displaying the click counter

In this exercise, we used React context to manage state in an application. We showed
how different components can interact with the state and how it can be passed to
components without the need for nested props.

React applications can contain multiple contexts or a single tree of data. React context
will even keep the current state while a modified component reloads in development
mode so you can keep coding without interrupting the application flow.

Firebase | 579

Firebase
Firebase is a mobile and web development platform owned by Google. Firebase
includes a web API so you can add authentication, analytics, a database, and more to
a web application. Firebase can be used as the backend of a modern web application,
allowing developers to focus on user experience. It includes a free tier that we will use
for the following exercise.

Exercise 14.04: Getting Started with Firebase

In this exercise, we'll set up a database and authentication using Firebase. We'll
need to register a free account. We'll also get the required payload that we'll need to
complete an activity using Firebase later in this chapter:

Note

The code files for this exercise can be found here: https://packt.link/bNMr5.

1. Firebase requires a Google account, but using it doesn't require a credit card
or any payment. To get started, navigate to https://firebase.google.com/ and click
Get started.

You should find yourself at the Firebase console. Click Add project and work
through the wizard. You can name your project whatever you like – Firebase will
make the name unique if you don't.

2. Don't enable Google Analytics, unless you already have an account you want
to use.

You'll need to wait a minute and then you'll find yourself at your project
dashboard. There you will find several services you can deploy to help build out
your application. We will focus only on Authentication and Firestore.

3. First, go to Authentication and click Get Started. Choose Email/
Password and enable it. All the other authentication methods require
additional setup steps. Go ahead and work through those steps if you like. The
documentation on the Firebase website should be sufficient. Save your changes.

4. Now click on Firestore Database and Create database. Choose the
Start in test mode option and then choose a region to deploy to. The
region doesn't really matter, but you probably want to choose something that is
close to you for faster responses. Finish creating the database.

https://packt.link/bNMr5
https://firebase.google.com/

580 | TypeScript and React

5. One last thing we need to do in the Firebase console is find our app config. The
way Firebase works is that a config object with a bunch of IDs will live in your app
and manage connections to your Firebase backend; however, the security rules
that govern which users can affect which data are all set up in the console (or
the CLI, which this book doesn't cover). This config is not actually secret because
if your app is set up correctly, there's nothing a malicious user can do that you
haven't allowed.

6. To get your app config, you first must register your app. You can add an app
either from Project Overview (the </> symbol) or via the gear next to
Project Overview. Add a web app, name it anything you like, and skip the
web hosting option. Go into your app config (gear icon) and find the config. Go
with config over CDN (content delivery network) and you'll find something that
looks like this:

const firebaseConfig = {

 apiKey: "abc123",

 authDomain: "blog-xxx.firebaseapp.com",

 projectId: "blog-xxx",

 storageBucket: "blog-xxx.appspot.com",

 messagingSenderId: "999",

 appId: "1:123:web:123abc"

};

Hang on to that config. We will need it later, but for now we are done in the
Firebase console. You may wish to return to it later to view your database,
manage your users, or even upgrade or delete your apps and projects, but you
won't need to do so again in this chapter.

Getting started with Firebase is easy. We'll be able to use Firebase to sign up,
authenticate and track users, and store data, without having to write our own
backend service.

Styling React Applications
A modern UI developer has a lot of different options when it comes to styling
applications. The traditional approach of creating a few Cascading Style Sheets
(CSS) files and including them is not great for scaling or for building a unified
presentation layer. Modern web applications and React in particular offer so many
different options for styling that we can't hope to cover all of them. Here are a few
popular techniques.

Styling React Applications | 581

Master Stylesheet

We have a styles.css file with all the styles. Styles are global and will affect all
components. This can work very well for a small application but has some serious
scaling problems as you add more styles and components. When new styles are
added, we may start to see existing components break as they are influenced by the
new styles.

Component-Scoped Styles

With this approach, we create a style for each component that needs styling and use
the import keyword to add the style to your component. A build system such as
webpack will prefix all of the style names so they don't "pollute" the global scope and
wind up styling other components. This is the approach you get out of the box with
Create React App, which uses webpack internally.

This approach works well if you can effectively use plain CSS or a stylesheet compiler
like Sass. Some developers don't like it because display elements are spread across
CSS and JSX files.

CSS-in-JS

CSS-in-JS is an approach that has produced popular libraries such as Styled
Components and Emotion. The approach is simply that we write our CSS in our
JavaScript (or TypeScript, in our case, as most of these libraries publish typings),
thereby combining our styling with our display layer.

This approach works well for teams that create lots of custom components.
The downside is another build dependency to maintain.

Component Libraries

Component libraries deliver fully usable components ready to be plugged into an
application. Component libraries are great for building a nice-looking application
very quickly. Many of them have been around for a lot of years. Some examples
of component libraries are Twitter Bootstrap, Semantic UI, and Material-UI. All of
these libraries publish versions designed to work with popular web systems such as
Angular, Vue, and of course React.

582 | TypeScript and React

Working with a component library is a lot like working with your own components.
You import the components and use them as you would any other component. Doing
this can really speed up your development cycles as you have common components
ready to go. Some teams find the components from the component library too
inflexible and don't like to deal with the additional dependencies.

The upcoming activity will use Material-UI for a quick and attractive build.

Activity 14.01: The Blog

Now that we have some experience with create-react-app and Firebase, let's
create a blog! In this activity, we will use all the tools and techniques covered earlier in
this chapter. We will use create-react-app to quickly create a React project. We
will use Material-UI to design an attractive app and write some of our own function
components. We will use react-router to enable routing between the different
pages of our application. We'll manage state with the React context API. Finally, we'll
use Firebase to have a backend service we can use to authenticate users and save
and share data between visits to the blog.

Let's go through the high-level steps for creating this blog. It sounds like a lot, but it
won't be all that challenging when we break it down into individual tasks:

Note

The code files for this activity can be found here: https://packt.link/qqIXz.

1. Create a new React application using create-react-app, as described earlier
in this chapter. You could even reuse an application you began earlier in this
chapter. Start your application so you can watch the implementation appear
before your eyes.

2. Refer back to your Firebase application from Exercise 14.04, Getting Started with
Firebase, or complete that exercise if you haven't yet. Find your config data in
Firebase and follow the instructions to add the firebase dependency to your
React application, then add the app-specific config from the Firebase console.

https://packt.link/qqIXz

Styling React Applications | 583

3. Implement the Firebase auth and firestore services, then add React context
and providers for each to maintain state.

Install react-router and material-ui to build some UI components and
create some routes. Start by creating a sign-up route and page:

Figure 14.5: Landing page

Figure 14.6: Sign-up page

584 | TypeScript and React

4. Create a route to add pages and add UI components to be able to set the title
and link for a new story:

Figure 14.7: Page for adding stories

5. Using your React context and provider and Firebase Firestore, persist your data
to the cloud and implement other features such as comments:

Figure 14.8: Commenting features

Styling React Applications | 585

Figure 14.9: Posting a comment

If this activity took some time, don't worry. If you needed to check the solution on
GitHub, don't worry about that either. This one was particularly challenging because
it included so many different pieces, but if you managed to pull them all together into
a working app, that's a great step forward. You've built a full-stack application with an
attractive UI, authentication, and a database.

Note

The solution to this activity can be found via this link.

586 | TypeScript and React

Summary
TypeScript is becoming a popular tool for writing web applications and while it wasn't
always prevalent in React, it is now well supported. Developers no longer need to
only add types to props but can gain the benefit of type safety and IntelliSense while
working across all parts of an application.

React has a very rich and varied ecosystem, but many TypeScript-friendly solutions
such as React Hooks and React context are becoming go-to choices to keep an
application simple but powerful. With TypeScript supported in create-react-app,
it's simple to get started and you can be building your app in minutes.

Developers who want to know more about React will need more than just this book,
but this chapter serves to show why you want to stay with TypeScript when you write
applications using React.

Appendix

590 | Appendix

Chapter 01: TypeScript Fundamentals

Activity 1.01: Creating a Library for Working with Strings

Solution:

Here are the steps that will help you create all the functions listed in the activity
problem statement.

toTitleCase

The toTitleCase function will process a string and capitalize the first letter of each
word, but will make all the other letters lowercase.

Test cases for this function are as follows:

"war AND peace" => "War And Peace"

"Catcher in the Rye" => "Catcher In The Rye"

 "tO kILL A mOCKINGBIRD" => "To Kill A MockingBird"

Here are the steps to help you write this function:

1. This function will take a single parameter that is a string and return a string
as well:

function toTitleCase (input:string) : string {

2. First off, we will split the input into an array of strings using the split string
method. We'll split on every space character:

 // split the string into an array on every occurrence of

 // the space character
 const words = input.split(" ");

3. Next, we will define a new array that will hold each word as we transform it into
title case, and use a for..of loop to loop through the array of words:

 const titleWords = [];
 // loop through each word
 for (const word of words) {

Chapter 01: TypeScript Fundamentals | 591

4. For each word we will extract the first character and the rest of the characters
using the slice string method. We will transform the initial to uppercase, and the
rest of the characters to lowercase. Next, we'll join them back together to form a
complete word and push the result to the holding array:

 // take the first character using `slice` and convert it to
uppercase
 const initial = word.slice(0, 1).toLocaleUpperCase();
 // take the rest of the character using `slice` and convert them
to lowercase
 const rest = word.slice(1).toLocaleLowerCase();
 // join the initial and the rest and add them to the resulting
array
 titleWords.push(`${initial}${rest}`);

5. At last, we will join all the processed words together, with a separating space,
and we have our result:

 // join all the processed words
 const result = titleWords.join(" ");
 return result;
}

6. Next, we can test whether the function gives the expected results for the given
test inputs:

console.log(`toTitleCase("war AND peace"):`);
console.log(toTitleCase("war AND peace"));

console.log(`toTitleCase("Catcher in the Rye"):`);
console.log(toTitleCase("Catcher in the Rye"));

console.log(`toTitleCase("tO kILL A mOCKINGBIRD"):`);
console.log(toTitleCase("tO kILL A mOCKINGBIRD"));

7. We should receive the results:

toTitleCase("war AND peace"):
War And Peace
toTitleCase("Catcher in the Rye"):
Catcher In The Rye
toTitleCase("tO kILL A mOCKINGBIRD"):
To Kill A Mockingbird

592 | Appendix

countWords

Here are the steps to help you write this function:

1. The countWords function will count the number of separate words within a
string. Words are delimited by spaces, dashes (-), or underscores (_). Test cases
for this function are as follows:

"War and Peace" => 3

"catcher-in-the-rye" => 4

"for_whom the-bell-tolls" => 5

2. Create the countWords function using the following code:

function countWords (input: string): number {

3. Split the words using a regex that will match any occurrence of a space,
underscore, or dash character:

 const words = input.split(/[_-]/);

4. Return the length of the array that is the result of the split:

 return words.length;

}

5. Test the function and console out the results:

console.log(`countWords("War and Peace"):`);

console.log(countWords("War and Peace"));

console.log(`countWords("catcher-in-the-rye"):`);

console.log(countWords("catcher-in-the-rye"));

console.log(`countWords("for_whom the-bell-tolls"):`);

console.log(countWords("for_whom the-bell-tolls"));

toWords

The toWords function will return all the words that are within a string. Words are
delimited by spaces, dashes (-), or underscores (_).

Test cases for this function are as follows:

"War and Peace" => [War, and, peace]

"catcher-in-the-rye" => [catcher, in, the, rye]

"for_whom the-bell-tolls" => [for, whom, the, bell, tolls]

Chapter 01: TypeScript Fundamentals | 593

This function is very similar to the previous one we developed. The significant
difference is that we need to return not only the number of words but also the
actual words themselves. So, instead of a number, this function will return an array
of strings:

1. Here is the code to create this function:

function toWords (input: string): string[] {

2. Once more, we will need to split the input into an array of strings using the
split string method, using the [_-] regular expression. Split the words using a
regular expression that will match any occurrence of a space, underscore, or
dash character:

 const words = input.split(/[_-]/);

3. Once we have the words, we can just return them:

 // return the words that were split
 return words;
}

4. Next, we can test whether the function gives the expected results for the given
test inputs:

console.log(`toWords("War and Peace"):`);
console.log(toWords("War and Peace"));

console.log(`toWords("catcher-in-the-rye"):`);
console.log(toWords("catcher-in-the-rye"));

console.log(`toWords("for_whom the-bell-tolls"):`);
console.log(toWords("for_whom the-bell-tolls"));

5. We should receive the results:

toWords("War and Peace"):
['War', 'and', 'Peace']
toWords("catcher-in-the-rye"):
['catcher', 'in', 'the', 'rye']
toWords("for_whom the-bell-tolls"):
['for', 'whom', 'the', 'bell', 'tolls']

594 | Appendix

repeat

repeat will take a string and a number and return that same string repeated that
number of times.

Test cases for this function are as follows:

„War", 3 => „WarWarWar"

„rye", 1 => „rye"

„bell", 0 => „"

Here are the steps to help you write this function:

1. This function will take two parameters, one that is a string and a second one that
is a number, and return a string as well:

function repeat (input: string, times: number): string {

There are many ways to implement this function, and we'll illustrate one
approach. We can create an array with the required number of elements, and
then use the array's fill method to fill it with the value of the string. In that
way, we will have an array of times elements, and each element will have the
input value:

 // create a new array that with length of `times`
 // and set each element to the value of the `input` string
 const instances = new Array(times).fill(input);

2. Next, we just need to join all the instances, using an empty string as the
delimiter. That way, we're making sure that no spaces or commas are inserted
between the strings:

 // join the elements of the array together
 const result = instances.join("");
 return result;
}

3. Next, we can test whether the function gives the expected results for the given
test inputs:

console.log(`repeat("War", 3):`);
console.log(repeat("War", 3));

console.log(`repeat("rye", 1):`);
console.log(repeat("rye", 1));

console.log(`repeat("bell", 0):`);
console.log(repeat("bell", 0));

Chapter 01: TypeScript Fundamentals | 595

4. We should receive the following results:

repeat("War", 3):
WarWarWar
repeat("rye", 1):
rye
repeat("bell", 0):

isAlpha

isAlpha returns true if the string only has alpha characters (that is, letters).
Test cases for this function are as follows:

"War and Peace" => false

"Atonement" => true

"1Q84" => false

Here are the steps to help you write this function:

1. This function will take a single parameter that is a string and return a Boolean:

function isAlpha (input: string): boolean {

2. For this function to work, we need to check whether each character is a lower-
or uppercase letter. One of the best ways to determine that is to use a regular
expression that checks it. In particular, the character group [a-z] will check for
a single character and if we use the star quantifier (*), we can tell the regular
expression to check for all the characters. We can add the i modifier to the
regular expression to make the match case-insensitive, so we don't need to
worry about letter casing:

// regex that will match any string that only has upper and //
lowercase letters
 const alphaRegex = /^[a-z]*$/i

3. Next, we need to actually test our input. Since we only need to know whether the
string matches, we can use the test method of the regular expression and return
its result:

 // test our input using the regex
 const result = alphaRegex.test(input);
 return result;
}

596 | Appendix

4. Next, we can test whether the function gives the expected results for the given
test inputs:

console.log(`isAlpha("War and Peace"):`);
console.log(isAlpha("War and Peace"));

console.log(`isAlpha("Atonement"):`);
console.log(isAlpha("Atonement"));

console.log(`isAlpha("1Q84"):`);
console.log(isAlpha("1Q84"));

5. We should receive the results:

isAlpha("War and Peace"):
false
isAlpha("Atonement"):
true
isAlpha("1Q84"):
false

isBlank

isBlank returns true if the string is blank, that is, it consists only of
whitespace characters.

Test cases for this function are as follows:

"War and Peace" => false

" " => true

"" => true

Here are the steps to help you write this function:

1. This function will take a single parameter that is a string and return a Boolean:

function isBlank (input: string): boolean {

2. For this function to work, we need to check whether each character in the string
is a whitespace character. We can use a regular expression to determine that, or
we can use some kind of looping construct that will iterate through the string.
One approach would be to test whether the first character is a space, and if it is,
slice it off:

// test if the first character of our input is an empty space
 while (input[0] === " ") {
// successively slice off the first character of the input
 input = input.slice(1);
 }

Chapter 01: TypeScript Fundamentals | 597

3. This loop will execute until it reaches a non-whitespace character. If it does
not encounter one, it will only stop when there is no first element of the string,
that is, when the string is the empty string. If that's the case, our original input
only contained whitespace, and we can return true. Otherwise, we should
return false:

// the loop will stop on the first character that is not a //space.
// if we're left with an empty string, we only have spaces in // the
input
 const result = input === "";
 return result;

4. Next, we can test whether the function gives the expected results for the given
test inputs:

console.log(`isBlank("War and Peace"):`);
console.log(isBlank("War and Peace"));

console.log(`isBlank(" "):`);
console.log(isBlank(" "));

console.log(`isBlank(""):`);
console.log(isBlank(""));

5. We should receive the following results:

isBlank("War and Peace"):
false
isBlank(" "):
true
isBlank(""):
true

Note that there are multiple ways to implement all the preceding functions. The
code shown is just one way to implement them, and these implementations are
mostly for illustrative purposes. For example, a proper string utility library will
need to have much more robust and extensive test suites.

598 | Appendix

Chapter 02: Declaration Files

Activity 2.01: Building a Heat Map Declaration File

Solution:

In this activity, we'll be building a TypeScript application named heat map log
system that will track the baseball pitch data and ensure the integrity of the data.
Perform the following steps to implement this activity:

1. Visit the following GitHub repository at https://packt.link/dqDPk and download the
activity project containing the specs and configuration elements.

2. Open the Visual Studio Code editor and then open the terminal.

3. Change to the activity-starter directory in the terminal or command
prompt by writing the following command:

cd activity-starter

4. Run the following command to install the dependencies:

npm install

You will now see the following files in the activity-starter directory:

Figure 2.19: Starter project files

https://packt.link/dqDPk

Chapter 02: Declaration Files | 599

5. Open the HeatMapTypes.d.ts declaration file in the types/ directory,
define a module called HeatMapTypes, and export the interface
named Pitcher. Define three attributes for the Pitcher module:
batterHotZones, pitcherHotZones, and coordinateMap.
The data structures should be the same for all three attributes,
Array<Array<number>>, but coordinateMap should be optional. Write
the following code to accomplish this:

declare module "HeatMapTypes" {

 export interface Pitcher {

 batterHotZones: Array<Array<number>>;

 pitcherHotZones: Array<Array<number>>;

 coordinateMap?: Array<any>;

 }

}

The preceding code in the editor looks like this:

Figure 2.20: Creating a pitcher interface

600 | Appendix

6. Open heat_map_data.ts and import the declaration files. Create and export
a let variable called data and assign it to the Pitcher type. You will need
to import the lodash library, which was installed when you initially ran npm
install. Write the following code to do this:

/// <reference path="./types/HeatMapTypes.d.ts"/>

import hmt = require('HeatMapTypes');

import _ = require('lodash');

export let data: hmt.Pitcher;

7. Add values to the data variable that adhere to the declaration rules.
Assign nested arrays as values to both the batterHotZones and
pitcherHotZones attributes. Add the following code to do this:

data = {

 batterHotZones: [[12.2, -3], [10.2, -5], [3, 2]],

 pitcherHotZones: [[3, 2], [-12.2, 3], [-10.2, 5]],

};

8. Create a new function named findMatch() that takes in both the
batterHotZones and pitcherHotZones arrays and utilize the lodash
function, intersectionWith(), to return the identical nested array. Finally,
store the value of the findMatch() function in the coordinateMap attribute
that was defined in the declaration file. Write the following code to do this:

export const findMatch = (batterHotZones, pitcherHotZones) => {

 return _.intersectionWith(batterHotZones, pitcherHotZones,
_.isEqual);
};

data.coordinateMap = findMatch(data.batterHotZones, data.
pitcherHotZones);
console.log(data.coordinateMap);

Chapter 02: Declaration Files | 601

9. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc heat_map_data.ts

node heat_map_data.js

Once we run the preceding commands, the following output is displayed in
the terminal:

[[3,2]]

In the preceding output, the common values from both the attributes are
fetched and then printed. In this case, the common values are [3, 2].

10. Now, change the values of both the attributes. Write the following code:

data = {

 batterHotZones: [[12.2, -3], [10.2, -5], [3, 2]],

 pitcherHotZones: [[3, 2], [-12.2, 3], [10.2, -5]],

};

11. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc heat_map_data.ts

node heat_map_data.js

Once we run the preceding commands, the following output is displayed in
the terminal:

[[10.2, -5], [3, 2]]

In the preceding output, the common values are [10.2, -5] and [3, 2]. Finally,
we built a heat map log system that will track the baseball pitch data and ensure the
integrity of the data.

602 | Appendix

Chapter 03: Functions

Activity 3.01: Building a Flight Booking System with Functions

Solution:

1. Start with the stubs provided in code samples. We have three files: index.ts,
bookings.ts, and flights.ts. The index.ts file is a bit abstract and will
just represent some of the transactions we push into our system. bookings.
ts handles the user-facing activities of managing a booking, and flights.ts
is the back office of filling up flights and making sure that everybody has a seat.

2. The index.ts file won't change unless you feel like changing it and adding
some new scenarios. Let's run it without adding any code:

npx ts-node index.ts
Not implemented!

So we have work to do. Several functions are not yet implemented. Let's start
by looking at flights.ts. There is a partial implementation there as we have
an interface called Flights that describes the attributes of a flight, a list of
available flights implementing that interface, and even a method to fetch the
flights, called getDestinations. We need to implement logic to check to see
whether the number of seats we want to book are still available, logic that can
hold seats while we confirm a reservation, and logic that converts those seats
held into reserved seats once our payment has been processed.

3. To check availability, we should see whether the number of seats we're
requesting exceeds the number of remaining seats while holding any held seats
in reserve. We can express this as seatsRequested <= seatsRemaining
- seatsHeld, which is a Boolean expression that can be returned by the
function. This can be written as an arrow function in the flights.ts file:

export const checkAvailability = (

 flight: Flight,

 seatsRequested: number

): boolean => seatsRequested <= flight.seatsRemaining - flight.
seatsHeld;

Chapter 03: Functions | 603

4. The holdSeats function should confirm that the requested seats are available
and hold them if they are. If there aren't enough seats remaining, we need to
throw an error and interrupt the flow:

export const holdSeats = (flight: Flight, seatsRequested: number):
Flight => {
 if (flight.seatsRemaining - flight.seatsHeld < seatsRequested) {

 throw new Error('Not enough seats remaining!');

 }

 flight.seatsHeld += seatsRequested;

 return flight;

};

5. To round out flights.ts, we have reserveSeats. This function operates
similarly to holdSeats, but it confirms that the seats we wish to reserve
have been held, and then converts them into reserved seats by increasing the
seatsHeld property and reducing the seatsRemaining property by the
same amount:

export const reserveSeats = (

 flight: Flight,

 seatsRequested: number

): Flight => {

 if (flight.seatsHeld < seatsRequested) {

 throw new Error('Seats were not held!');

 }

 flight.seatsHeld -= seatsRequested;

 flight.seatsRemaining -= seatsRequested;

 return flight;

};

That should do it for flights.ts. However, our program still won't run until
we implement bookings.ts.

604 | Appendix

6. First of all, we're going to use a factory pattern for creating bookings. That means
we'll have a function that returns a function to create bookings. We'll employ
currying to create a closure so that we can initialize the createBooking
function with bookingNumber in order to give each booking a unique
identifier. The factory could look like this:

const bookingsFactory = (bookingNumber: number) => (

 flight: Flight,

 seatsHeld: number

): Booking => ({

 bookingNumber: bookingNumber++,

 flight,

 paid: false,

 seatsHeld,

 seatsReserved: 0,

});

Our factory takes bookingNumber as an argument to initialize this value and
then increments the number each time it creates a new booking. We assign
some default values to the booking to confirm to the Booking interface already
provided in the module.

7. To call the factory and get a createBooking function with bookingNumber
already curried into it, we can simply write the following:

const createBooking = bookingsFactory(1);

8. We have yet to write functions to start the booking process, handle the payment,
and complete the booking, thereby reserving the seats on a flight. To begin the
booking, we need to check availability on the flight we've chosen based on the
number of seats we're requesting. If that is successful, we can create the booking
and hold the seats. Otherwise, we can raise an error to alert the user to the fact
that the booking cannot be completed:

 export const startBooking = (

 flight: Flight,

 seatsRequested: number

): Booking => {

 if (checkAvailability(flight, seatsRequested)) {

 holdSeats(flight, seatsRequested);

 return createBooking(flight, seatsRequested);

 }

Chapter 03: Functions | 605

 throw new Error('Booking not available!');

};

9. In order to check flight availability and hold seats, we need to import these
functions from flights.ts. This has already been done at the top of the
bookings.ts module. The export keyword is used throughout these
modules to make functions available to other modules. Some functions lack
the export keyword, and so can only be invoked from within the module,
effectively making them private.

10. We'll cheat a little with our processPayment function since we aren't
implementing a payment system. We will just mark the booking as paid and
return it:

export const processPayment = (booking: Booking): Booking => {

 booking.paid = true;

 return booking;

};

11. To complete the booking, we call reserveSeats in the flights module and
then update our counts:

export const completeBooking = (booking: Booking): Booking => {

reserveSeats(booking.flight, booking.seatsHeld);

booking.seatsReserved = booking.seatsHeld;

booking.seatsHeld = 0;

return booking;

};

12. With all the functions implemented, we can invoke our program again and see
the output:

npx ts-node index.ts

Booked to Lagos {

 bookingNumber: 1,

 flight: {

 destination: 'Lagos',

 flightNumber: 1,

 seatsHeld: 0,

 seatsRemaining: 29,

 time: '5:30'

 },

 paid: true,

 seatsHeld: 0,

606 | Appendix

 seatsReserved: 1

}

//...

Istanbul flight {

 destination: 'Istanbul',

 flightNumber: 7,

 seatsHeld: 0,

 seatsRemaining: 0,

 time: '14:30'

}

Booking not available!

Activity 3.02: Writing Unit Tests

Solution:

1. In the describe block, fetch the destinations for this scenario and then cache
the first one as flight. Now, we can write a simple test to test that the correct
number of destinations were returned:

 test('get destinations', () => {

 expect(destinations).toHaveLength(7);

 });

We could test each of the individual destinations and their properties as well.

2. Check the availability of several of the destinations. We can introduce all sorts of
scenarios. Here are a few:

 test('checking availability', () => {

 const destinations = getDestinations();

 expect(checkAvailability(destinations[0], 3)).toBeTruthy();

 expect(checkAvailability(destinations[1], 5)).toBeFalsy();

 expect(checkAvailability(destinations[2], 300)).toBeFalsy();

 expect(checkAvailability(destinations[3], 3)).toBeTruthy();

 });

The first destination has at least three seats available. The second does not have
five available, and so on.

Chapter 03: Functions | 607

3. Try holding some seats in the next test. We should test both success and
failure scenarios:

 test('hold seats', () => {

 expect.assertions(3);

 flight = holdSeats(flight, 3);

 expect(flight.seatsHeld).toBe(3);

 flight = holdSeats(flight, 13);

 expect(flight.seatsHeld).toBe(16);

 try {

 holdSeats(flight, 15);

 } catch (e) {

 expect(e.message).toBe('Not enough seats remaining!');

 }

 });

Note that in order to ensure that the catch block was reached, we're expecting
three assertions in this test. Without that, the test would still turn green even if,
for some reason, the last call to holdSeats didn't throw an error.

4. Finish up the flights test with a unit test to reserve seats:

 test('reserve seats', () => {

 expect.assertions(3);

 flight = reserveSeats(flight, 3);

 expect(flight.seatsRemaining).toBe(27);

 flight = reserveSeats(flight, 13);

 expect(flight.seatsRemaining).toBe(14);

 try {

 reserveSeats(flight, 1);

 } catch (e) {

 expect(e.message).toBe('Seats were not held!');

 }

 });

This test runs through a few scenarios, including another error condition. In
some cases, it might be appropriate to put error conditions in separate tests.
A good rule of thumb for this is that each of your tests should be easy to
comprehend and maintain. If any module or function gets to be too big, just
break it up.

608 | Appendix

5. Now, write some tests for bookings using the same principles:

describe('bookings tests', () => {

 test('create a booking', () => {

 const booking = startBooking(destinations[0], 3);

 expect(booking).toEqual({

 bookingNumber: 1,

 flight: destinations[0],

 paid: false,

 seatsHeld: 3,

 seatsReserved: 0,

 });

 });

 test('pay for a booking', () => {

 let booking = startBooking(destinations[0], 3);

 booking = processPayment(booking);

 expect(booking.paid).toBe(true);

 });

 test('complete a booking', () => {

 let booking = startBooking(destinations[0], 3);

 booking = processPayment(booking);

 booking = completeBooking(booking);

 expect(booking.paid).toBe(true);

 expect(booking.seatsReserved).toBe(3);

 });

});

6. Let's now try running the tests and see how things look:

npm test

> jest --coverage --testRegex="^((?!-solution).)*\\.test\\.tsx?$"

 PASS ./bookings.test.ts

 PASS ./flights.test.ts

-------------|---------|----------|---------|---------|--------------

File | % Stmts | % Branch | % Funcs | % Lines | Uncovered
Line #s
-------------|---------|----------|---------|---------|--------------

All files | 97.14 | 83.33 | 100 | 96.97 |

 bookings.ts | 94.74 | 50 | 100 | 94.44 | 34

 flights.ts | 100 | 100 | 100 | 100 |

Chapter 03: Functions | 609

-------------|---------|----------|---------|---------|--------------

Test Suites: 2 passed, 2 total

Tests: 7 passed, 7 total

Snapshots: 0 total

Time: 1.782 s

Ran all test suites.

The tests passed! But we haven't hit 100% line coverage yet. We can actually
open up the coverage report, which will be inside the coverage/lcov-
report directory in the root of our project. The coverage tool (Istanbul) that
comes bundled with Jest will produce an HTML report that we can open in any
browser. This will show us the exact piece of code that hasn't been covered:

Figure 3.2: HTML report produced by the tool

7. We've missed one error scenario. Let's add that as a new describe block to
avoid further complicating the tests we've already written:

describe('error scenarios', () => {

 test('booking must have availability', () => {

 expect.assertions(1);

 try {

 startBooking(destinations[6], 8);

 } catch (e) {

 expect(e.message).toBe('Booking not available!');

 }

 });

});

610 | Appendix

There's no particular need to have a new describe block, but in this case, it
might make the code a bit cleaner. Use describe and test blocks for readability
and maintenance.

8. Let's now run the tests again:

npm test

> jest --coverage --testRegex="^((?!-solution).)*\\.test\\.tsx?$"
 PASS ./bookings-solution.test.ts
 PASS ./flights-solution.test.ts

-------------|---------|----------|---------|---------|--------------

File | % Stmts | % Branch | % Funcs | % Lines | Uncovered
Line #s
-------------|---------|----------|---------|---------|--------------

All files | 100 | 100 | 100 | 100 |

 bookings.ts | 100 | 100 | 100 | 100 |

 flights.ts | 100 | 100 | 100 | 100 |

-------------|---------|----------|---------|---------|--------------

Test Suites: 2 passed, 2 total

Tests: 8 passed, 8 total

Snapshots: 0 total

Time: 0.694 s, estimated 1 s

Ran all test suites.

We've hit our goal of 100% line coverage!

Chapter 04: Classes and Objects | 611

Chapter 04: Classes and Objects

Activity 4.01: Creating a User Model Using Classes, Objects, and Interfaces

Solution:

In this activity, we'll be building a user authentication system that will pass login data
to a backend API to register and sign users into our baseball scorecard application.
Perform the following steps to implement this activity:

1. Visit the following GitHub repository and download the activity project containing
the specs and configuration elements: https://packt.link/oaWbW.

The activity-solution directory contains the completed solution code,
and the activity-starter directory provides the basic start code to
work with.

2. Open the Visual Studio Code editor and then open the terminal. Change into the
activity-starter directory in the terminal or command prompt and run
the following command to install the dependencies:

npm install

You will now see the following files in the activity-starter directory:

Figure 4.10: Activity project files

https://packt.link/oaWbW

612 | Appendix

3. Open the auth.ts file inside the activity-starter folder and create an
interface named ILogin containing two string attributes, namely, email and
password. Write the following code to accomplish this:

interface ILogin{

 email: string;

 password:string;

}

4. Create a Login class that takes in an object that contains the string attributes of
email and password. Also, pass the ILogin interface as a parameter to the
constructor function inside the Login class:

export class Login{

 email: string;

 password: string;

 constructor(args: ILogin){

 this.email = args.email;

 this.password = args.password;

 }

}

5. Create an interface named IAuth containing two attributes, user and source.
Here, the user attribute will be of the Login type, and the source attribute
will be of the string type. Write the following code to implement this:

interface IAuth{

 user: Login;

 source: string;

}

6. Create an Auth class that takes in an object containing the attributes of user
and source. Also, create a constructor function that will take the IAuth
interface as a parameter. Write the following code to accomplish this:

export default class Auth{

 user: Login;

 source: string;

Chapter 04: Classes and Objects | 613

 constructor(args: IAuth){

 this.user = args.user;

 this.source = args.source;

 }

}

7. Next, we'll add a validUser() method to the Auth class, which returns
a string stating that the user is authenticated if email is equal to admin@
example.com, and if password is equal to secret123. If either of those
values doesn't match, the function will return a string stating that the user is not
authenticated. Write the following code to define this function:

validUser(): string{

 const { email, password } = this.user;

 if(email === "admin@example.com"
 && password === "secret123"){
 return `Validating user…User is authenticated: true`;

 } else {

 return `Validating user…User is authenticated: false`;

 }

}

8. Create two objects of the Login class, namely, goodUser and badUser. For
the goodUser object, set the email value to admin@example.com and
password to secret123. For the badUser object, set the email value to
admin@example.com and password to whoops. Write the following code to
accomplish this:

const goodUser = new Login({

 email: "admin@example.com",

 password: "secret123"

});

const badUser = new Login({

 email: "admin@example.com",

 password: "whoops"

});

614 | Appendix

9. Create two objects of the Auth class, namely, authAttemptFromGoodUser
and authAttemptFromBadUser. For the first object, assign the goodUser
object of the Login class to the user attribute and Google to the source
attribute. For the second object, assign the badUser object of the Login class
to the user attribute and Google to the source attribute. Once both objects
are created, call the validUser() function of the Auth class and print the
results in the terminal. Write the following code to accomplish this:

const authAttemptFromGoodUser = new Auth({

 user: goodUser,

 source: "Google"

});

console.log(authAttemptFromGoodUser.validUser());

const authAttemptFromBadUser = new Auth({

 user: badUser,

 source: "Google"

});

console.log(authAttemptFromBadUser.validUser());

10. Now, in the terminal, type the following commands to generate the JavaScript
code and run it:

tsc auth.ts

node auth.js

Once we run the preceding commands, the following output is displayed in
the terminal:

Validating user…User is authenticated: true

Validating user…User is authenticated: false

In the preceding output, the validUser() function returns a true value when
the correct details of user and password are passed. When incorrect details are
passed, the function returns a false value.

Chapter 05: Interfaces and Inheritance | 615

Chapter 05: Interfaces and Inheritance

Activity 5.01: Building a User Management Component Using Interfaces

Solution:

1. Create a user object interface with the following properties: email :
string, loginAt : number, and token : string. Make loginAt and
token optional:

interface UserObj {

 email: string

 loginAt?: number

 token?: string

}

2. Build a class interface with a global property user and use the interface created
in Step 1 to apply user object rules. You need to define a getUser method
that returns the user object. Use the interface to ensure that the return object
is a user object. Finally, define a login method that takes a user object and
password(type string) as arguments. Use the user object interface as the
user argument type:

interface UserClass {

 user: UserObj

 getUser(): UserObj

 login(user: UserObj, password: string):UserObj

}

3. Declare a class called UserClass that implements the class interface from
Step 2. Your login method should assign the local function's user argument
to the global user property and return the global user. The getUser method
should return the global user:

class User implements UserClass {

 user:UserObj

 getUser(): UserObj {

 return this.user

 }

616 | Appendix

 login(user: UserObj, password: string): UserObj {

 // set props user object

 return this.user = user

 }

}

4. Create an instance of your class, as declared in Step 2:

const newUserClass:UserClass = new User()

5. Create a user object instance:

const newUser: UserObj = {

 email: "home@home.com",

 loginAt: new Date().getTime(),

 token: "123456"

}

6. Console out our methods to ensure that they are working as expected:

console.log(

 newUserClass.login(newUser, "password123")

)

console.log(

 newUserClass.getUser()

)

The expected output is as follows:

{ email: 'home@home.com', loginAt: 1614068072515, token: '123456' }

{ email: 'home@home.com', loginAt: 1614068072515, token: '123456' }

This user management class is a central location where you can isolate all your
application's user-related functions and rules. The rules you have crafted by
using interfaces to implement your code will ensure that your code is better
supported, easier to work with, and bug-free.

Chapter 05: Interfaces and Inheritance | 617

Activity 5.02: Creating a Prototype Web Application for a Vehicle Showroom

Using Inheritance

Solution:

1. Create a parent class that will hold all common methods and properties for a
base vehicle, define a constructor method that allows you to initialize the base
properties of this class, and add a method that returns your properties as an
object. If necessary, add an access modifier to properties and class methods you
want to control access to:

class Motor {

 private name: string

 wheels: number

 bodyType: string

 constructor(name: string, wheels: number, bodyType: string) {

 this.name = name

 this.wheels = wheels

 this.bodyType = bodyType

 }

 protected getName(): string {

 return this.name

 }

 buildMotor() {

 return {

 wheels: this.wheels,

 bodyType: this.bodyType,

 name: this.name

 }

 }

}

2. Derive two child classes from your parent class that are types of vehicles, for
example, Car and Truck. Override your constructor to add some unique
properties to your child classes based on the type of vehicles:

class Car extends Motor {

 rideHeight: number

 constructor(name: string, wheels: number, bodyType: string,

618 | Appendix

rideHeight: number) {

 super(name, wheels, bodyType)

 this.rideHeight = rideHeight

 }

 _buildMotor() {

 return {

 ...super.buildMotor,

 rideHeight: this.rideHeight

 }

 }

}

class Truck extends Motor {

 offRoad: boolean

 constructor(name: string, wheels: number, bodyType: string,
offRoad: boolean) {
 super(name, wheels, bodyType)

 this.offRoad = offRoad

 }

 _buildMotor() {

 return {

 wheels: this.wheels,

 bodyType: this.bodyType,

 offRoad: this.offRoad

 }

 }

}

3. Derive a class from one of the child classes created in Step 3, for example, Suv,
which will have some of the things a truck might have, so it would be logical to
extend Truck:

class Suv extends Truck {

 roofRack: boolean

 thirdRow: boolean

 constructor(name: string, wheels: number, bodyType: string,

 offRoad: boolean, roofRack: boolean, thirdRow: boolean) {

 super(name, wheels, bodyType, offRoad)

Chapter 05: Interfaces and Inheritance | 619

 this.roofRack = roofRack;

 this.thirdRow = thirdRow

 }

}

4. Instantiate your child class:

const car: Car = new Car('blueBird', 4, 'sedan', 14)

const truck: Truck = new Truck('blueBird', 4, 'sedan', true)

const suv: Suv = new Suv('xtrail', 4, 'box', true, true, true)

5. Console out our child class instance:

console.log(car)

console.log(truck)

console.log(suv)

You will obtain the following output:

Car { name: 'blueBird', wheels: 4, bodyType: 'sedan', rideHeight: 14
}
Truck { name: 'blueBird', wheels: 4, bodyType: 'sedan', offRoad: true
}
Suv {

 name: 'xtrail',

 wheels: 4,

 bodyType: 'box',

 offRoad: true,

 roofRack: true,

 thirdRow: true

}

In this activity, you created the bare minimum classes that we require for the
web application. We have shown how we can build complexity, reuse, and
extend application code with inheritance in TypeScript.

620 | Appendix

Chapter 06: Advanced Types

Activity 6.01: Intersection Type

Solution:

1. Create a Motor type, which will house some common properties you may reuse
on their own or in combination with other types to describe a vehicle object. You
can use the following properties as a starting point: color, doors, wheels,
and fourWheelDrive:

type Motor = {

 color: string;

 doors: number;

 wheels: number;

 fourWheelDrive: boolean;

}

2. Create a Truck type with properties common to a truck, for example,
doubleCab and winch:

type Truck = {

 doubleCab: boolean;

 winch: boolean;

}

3. Intersect the two types to create a PickUpTruck type:

type PickUpTruck = Motor & Truck;

4. Build a TruckBuilder function that returns our PickUpTruck type and also
takes PickUpTruck as an argument:

function TruckBuilder (truck: PickUpTruck): PickUpTruck {

 return truck

}

const pickUpTruck: PickUpTruck = {

 color: 'red',

 doors: 4,

 doubleCab: true,

 wheels: 4,

Chapter 06: Advanced Types | 621

 fourWheelDrive: true,

 winch: true

}

5. Console out the function return:

console.log (

 TruckBuilder(pickUpTruck)

)

You should see the following output once you run the file:

{

 color: 'red',

 doors: 4,

 doubleCab: true,

 wheels: 4,

 fourWheelDrive: true,

 winch: true

}

Activity 6.02: Union Type

Solution:

1. Build a LandPack and an AirPack type. Make sure to have a literal to identify
the package type:

type LandPack = {

 height: number,

 weight: number,

 type: "land",

 label?: string };

type AirPack = {

 height: number,

 weight: number,

 type : "air",

 label?: string };

2. Construct a union type, ComboPack, which can be LandPack or AirPack:

type ComboPack = LandPack | AirPack

622 | Appendix

3. Make a Shipping class to process your packages. Make sure to use your literal
to identify your package types and modify your package with the correct label for
its type:

class Shipping {

 Process(pack: ComboPack) {

 // check package type

 if(pack.type === "land") {

 return this.ToLand(pack);

 } else {

 return this.ToAir(pack);

 }

 }

 ToAir(pack: AirPack): AirPack {

 pack.label = "air cargo"

 return pack;

 }

 ToLand(pack: LandPack): LandPack {

 pack.label = "land cargo"

 return pack;

 }

}

4. Create two package objects of the AirPack and LandPack types. Then,
instantiate your Shipping class, process your new objects, and console out the
modified objects:

const airPack: AirPack = {

 height: 5,

 weight: 10,

 type: "air",

};

const landPack: LandPack = {

 height: 5,

 weight: 10,

 type: "land",

};

const shipping = new Shipping;

Chapter 06: Advanced Types | 623

console.log(

 shipping.Process(airPack)

);

console.log(

 shipping.Process(landPack)

);

Once you run the file, you will obtain the following output:

{ height: 5, weight: 10, type: 'air', label: 'air cargo' }

{ height: 5, weight: 10, type: 'land', label: 'land cargo' }

Activity 6.03: Index Type

Solution:

1. Build your PackageStatus index type using an interface with a status
property of the string type and a value of the Boolean type:

interface PackageStatus {

 [status: string]: boolean;}

2. Create a Package type that includes a property of the PackageStatus type
and some common properties of a typical package:

type Package = {

 packageStatus: PackageStatus,

 barcode: number,

 weight: number

}

3. Make a class to process your Package type, which takes the Package type on
initialization, has a method to return your packageStatus property, and a
method that updates and returns the packageStatus property:

class PackageProcess {

 pack: Package

 constructor(pack: Package) {

 this.pack = pack;

 }

 Status () {

624 | Appendix

 return this.pack.packageStatus;

 }

 UpdateStatus(status: string, state: boolean) {

 this.pack.packageStatus[status] = state;

 return this.Status();}

}

4. Create a Package object called pack:

const pack: Package = {

 packageStatus: {"shipped": false, "packed": true, "delivered":
true},
 barcode: 123456,

 weight: 28

};

5. Instantiate your PackageProcess class with your new pack object:

const processPack = new PackageProcess(pack)

6. Console out your pack status:

console.log(processPack.Status());

7. Update your pack status and console out your new pack status:

console.log(

 processPack.UpdateStatus("shipped", true)

);

Once you run the file, you should obtain the following output:

{ shipped: false, packed: true, delivered: true }

{ shipped: true, packed: true, delivered: true }

The first line in the preceding output displays the original pack status, whereas
the second line displays the updated pack status.

Chapter 07: Decorator | 625

Chapter 07: Decorator

Activity 7.01: Creating Decorators for Call Counting

Solution:

1. Create a class called Person with the public properties firstName,
lastName, and birthday.

2. Add a constructor that initializes the properties via the constructor parameters:

class Person {

 constructor (public firstName: string,

 public lastName: string,

 public birthDate: Date) {

 }

}

3. Add a private field called _title and expose it via a getter and setter as a
property called title:

 private _title: string;

 public get title() {

 return this._title;

 }

 public set title(value: string) {

 this._title = value;

 }

4. Add a method called getFullName that will return the full name of person:

 public getFullName() {

 return `${this.firstName} ${this.lastName}`;

 }

5. Add a method called getAge that will return the current age of the person
(by subtracting the birthday from the current year):

 public getAge() {

 // only sometimes accurate

 const now = new Date();

 return now.getFullYear() – this.birthDate.getFullYear();

 }

626 | Appendix

6. Create a global object called count and initialize it to the empty object:

const count = {};

7. Create a constructor wrapping decorator factory called CountClass that will
take a string parameter called counterName:

type Constructable = { new (...args: any[]): {} };

function CountClass(counterName: string) {

 return function <T extends Constructable>(constructor: T) {

 // wrapping code here

 }

}

8. Inside the wrapping code, increase the count object's property defined in the
counterName parameter by 1 and then set the prototype chain of the wrapped
constructor:

 const wrappedConstructor: any = function (...args: any[]) {

 const result = new constructor(...args);

 if (count[counterName]) {

 count[counterName]+=1;

 } else {

 count[counterName]=1;

 }

 return result;

 };

 wrappedConstructor.prototype = constructor.prototype;

 return wrappedConstructor;

9. Create a method wrapping decorator factory called CountMethod that will
take a string parameter called counterName:

function CountMethod(counterName: string) {

 return function (target: any, propertyName: string,

 descriptor: PropertyDescriptor) {

 // method wrapping code here

 }

}

Chapter 07: Decorator | 627

10. Add checks for whether the descriptor parameter has value, get, and
set properties:

 if (descriptor.value) {

 // method decoration code

 }

 if (descriptor.get) {

 // get property accessor decoration code

 }

 if (descriptor.set) {

 // set property accessor decoration code

 }

11. In each respective branch, add code that wraps the method:

 // method decoration code

 const original = descriptor.value;

 descriptor.value = function (...args: any[]) {

 // counter management code here

 return original.apply(this, args);

 }

 // get property accessor decoration code

 const original = descriptor.get;

 descriptor.get = function () {

 // counter management code here

 return original.apply(this, []);

 }

 // set property accessor decoration code

 const original = descriptor.set;

 descriptor.set = function (value: any) {

 // counter management code here

 return original.apply(this, [value]);

 }

628 | Appendix

12. Inside the wrapping code, increase the count object's property defined in the
counterName parameter by 1:

 // counter management code

 if (count[counterName]) {

 count[counterName]+=1;

 } else {

 count[counterName]=1;

 }

13. Decorate the class using the CountClass decorator, with a person parameter:

@CountClass('person')

class Person{

14. Decorate getFullName, getAge, and the title property getter with the
CountMethod decorator, with the person-full-name, person-age, and
person-title parameters, respectively:

 @CountMethod('person-full-name')

 public getFullName() {

 @CountMethod('person-age')

 public getAge() {

 @CountMethod('person-title')

 public get title() {

15. Write code outside the class that will instantiate three person objects:

const first = new Person("Brendan", "Eich", new Date(1961,6,4));

const second = new Person("Anders", "Hejlsberg ", new
Date(1960,11,2));
const third = new Person("Alan", "Turing", new Date(1912,5,23));

16. Write code that will call the getFullName and getAge methods on
the objects:

const fname = first.getFullName();

const sname = second.getFullName();

const tname = third.getFullName();

const fage = first.getAge();

const sage = second.getAge();

const tage = third.getAge();

Chapter 07: Decorator | 629

17. Write code that will check whether the title property is empty and set it to
something if it is:

if (!first.title) {

 first.title = "Mr."

}

if (!second.title) {

 second.title = "Mr."

}

if (!third.title) {

 third.title = "Mr."

}

18. Write code that will log the count object to the console:

console.log(count);

Once you run the file, you will obtain the following output on the console:

{

 person: 3,

 'person-full-name': 3,

 'person-age': 3,

 'person-title': 6

}

Activity 7.02: Using Decorators to Apply Cross-Cutting Concerns

Solution:

1. Create the code for the BasketBallGame class:

 interface Team {

 score: number;

 name: string;

 }

 class BasketBallGame {

 private team1: Team;

 private team2: Team;

 constructor(teamName1: string, teamName2: string) {

630 | Appendix

 this.team1 = { score: 0, name: teamName1 };

 this.team2 = { score: 0, name: teamName2 };

 }

 getScore() {

 return `${this.team1.score}:${this.team2.score}`;

 }

 updateScore(byPoints: number, updateTeam1: boolean) {

 if (updateTeam1) {

 this.team1.score += byPoints;

 } else {

 this.team2.score += byPoints;

 }

 }

 }

2. Create a class decorator factory called Authenticate that will take a
permission parameter and return a class decorator with constructor
wrapping. The class decorator should load the permissions metadata
property (array of strings), then check if the passed parameter is an element
of the array. If the passed parameter is not an element of the array, the class
decorator should throw an error, and if present, it should continue with the
class creation:

 type Constructable = { new (...args: any[]): {} };

 function Authenticate(permission: string) {

 return function <T extends Constructable>(constructor: T) {

 const wrappedConstructor: any = function (...args: any[])
{
 if (Reflect.hasMetadata("permissions",
wrappedConstructor)) {
 const permissions = Reflect.
getMetadata("permissions",

wrappedConstructor) as string[];
 if (!permissions.includes(permission)) {

 throw Error(`Permission ${permission} not
present`);
 }

 }

Chapter 07: Decorator | 631

 const result = new constructor(...args);

 return result;

 };

 wrappedConstructor.prototype = constructor.prototype;

 return wrappedConstructor;

 };

 }

3. Define a metadata property of the BasketballGame class called
permissions with the value ["canUpdateScore"]:

 Reflect.defineMetadata("permissions", ["canUpdateScore"],
BasketBallGame);

4. Apply the class decorator factory on the BasketballGame class with a
parameter value of "canUpdateScore":

 @Authenticate("canUpdateScore")

 class BasketBallGame {

5. Create a method decorator called MeasureDuration that will use method
wrapping to start a timer before the method body is executed and stop it after
it's done. You need to calculate the duration and push it to a metadata property
called durations for the method:

 function MeasureDuration() {

 return function (target: any, propertyName: string,

 descriptor: PropertyDescriptor)
{
 if (descriptor.value) {

 const original = descriptor.value;

 descriptor.value = function (...args: any[]) {

 const start = Date.now();

 const result = original.apply(this, args);

 const end = Date.now();

 const duration = end-start;

 if (Reflect.hasMetadata("durations", target,
propertyName)) {
 const existing = Reflect.getMetadata("durations",

 target,
propertyName) as number[];
 Reflect.defineMetadata("durations", existing.
concat(duration),
 target,
propertyName);
 } else {

632 | Appendix

 Reflect.defineMetadata("durations", [duration],

 target,
propertyName)
 }

 return result;

 }

 }

 }

 }

6. Apply the MeasureDuration method decorator on the
updateScore method:

 @MeasureDuration()

 updateScore(byPoints: number, updateTeam1: boolean) {

7. Create a method decorator factory called Audit that will take a message
parameter and return a method decorator. The method decorator should use
method wrapping to get the arguments and the return value of the method.
After the successful execution of the original method, it should display the audit
log to the console:

 function Audit(message: string) {

 return function (target: any, propertyName: string,

 descriptor: PropertyDescriptor)
{
 if (descriptor.value) {

 const original = descriptor.value;

 descriptor.value = function (...args: any[]) {

 const result = original.apply(this, args);

 console.log(`[AUDIT] ${message} (${propertyName})
called with:`)
 console.log("[AUDIT]", args);

 console.log("[AUDIT] and returned result:")

 console.log("[AUDIT]", result);

 return result;

 }

 }

 }

 }

Chapter 07: Decorator | 633

8. Apply the Audit method decorator factory on the updateScore method, with
a parameter value of Updated score:

 @MeasureDuration()

 @Audit("Updated score")

 updateScore(byPoints: number, updateTeam1: boolean) {

9. Create a parameter decorator called OneTwoThree that will add the decorated
parameter in the one-two-three metadata property:

 function OneTwoThree(target: any, propertyKey: string,

 parameterIndex: number) {

 if (Reflect.hasMetadata("one-two-three", target, propertyKey))
{
 const existing = Reflect.getMetadata("one-two-three",

 target, propertyKey) as
number[];
 Reflect.defineMetadata("one-two-three",

 existing.concat(parameterIndex), target,
propertyKey);
 } else {

 Reflect.defineMetadata("one-two-three",

 [parameterIndex], target,
propertyKey);
 }

 }

10. Create a method decorator called Validate that will use method wrapping to
load all values for the one-two-three metadata property, and for all marked
parameters, check their value. If the value is 1, 2, or 3, you should continue the
execution of the original method. If not, you should stop the execution with
an error:

 function Validate() {

 return function (target: any, propertyKey:string,

 descriptor: PropertyDescriptor)
{
 const original = descriptor.value;

 descriptor.value = function (...args: any[]) {

 // validate parameters

 if (Reflect.hasMetadata("one-two-three",

 target, propertyKey)) {

 const markedParams = Reflect.getMetadata("one-two-
three",
 target, propertyKey) as
number[];

634 | Appendix

 for (const marked of markedParams) {

 if (![1,2,3].includes(args[marked])) {

 throw Error(`The parameter at position
${marked} can only be 1, 2 or 3`);
 }

 }

 }

 return original.apply(this, args);

 }

 }

 }

11. Apply the OneTwoThree decorator to the byPoints parameter
of updateScore and apply the Validate decorator to the
updateScore method.

 @MeasureDuration()

 @Audit("Updated score")

 @Validate()

 updateScore(@OneTwoThree byPoints: number, updateTeam1: boolean)
{

12. Create a game object and update its score a few times:

const game = new BasketBallGame("LA Lakers", "Boston Celtics");

game.updateScore(3, true);

game.updateScore(2, false);

game.updateScore(2, true);

game.updateScore(2, false);

game.updateScore(2, false);

game.updateScore(2, true);

game.updateScore(2, false);

When you run the file, the console should reflect the application of
all decorators:

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [3, true]

[AUDIT] and returned result:

[AUDIT] undefined

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, false]

[AUDIT] and returned result:

[AUDIT] undefined

Chapter 07: Decorator | 635

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, true]

[AUDIT] and returned result:

[AUDIT] undefined

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, false]

[AUDIT] and returned result:

[AUDIT] undefined

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, false]

[AUDIT] and returned result:

[AUDIT] undefined

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, true]

[AUDIT] and returned result:

[AUDIT] undefined

[AUDIT] Updated score (updateScore) called with arguments:

[AUDIT] [2, false]

[AUDIT] and returned result:

[AUDIT] undefined

7:8

636 | Appendix

Chapter 08: Dependency Injection in TypeScript

Activity 8.01: DI-Based Calculator

Solution:

In this activity, we will build a basic calculator that utilizes DI to evaluate mathematical
expressions, as well as logging its output to either the console or a file:

1. To start things off, define the basic building block of our calculator – an operator.
This is defined via an interface, which actual implementations can rely on:

export interface Operator {

 readonly symbol: string;

 evaluate(a: number, b: number): number;

}

You need to create this file in the src/interfaces folder and save it as
operator.interface.ts.

2. Next, implement the first operator – the addition operator. This will be a class
that implements the Operator interface:

import { Operator } from '../interfaces/operator.interface';

export class AddOperator implements Operator {

 readonly symbol = '+';

 public evaluate(a: number, b: number) {

 return a + b;

 }

}

The preceding code needs to be written in a file called add.operator.ts in
src\operators.

3. Make this operator available for injection by InversifyJS by adding the @
injectable decorator to the class:

import { injectable } from 'inversify';

import { Operator } from '../interfaces/operator.interface';

@injectable()

export class AddOperator implements Operator {

Chapter 08: Dependency Injection in TypeScript | 637

 readonly symbol = '+';

 public evaluate(a: number, b: number) {

 return a + b;

 }

}

4. Next, since interfaces don't exist at runtime, we need to create some runtime
representation of our abstraction for AddOperator. This is usually done using
symbols, and will be used by InversifyJS at runtime to understand what needs to
be injected. We'll define it under a TYPES constant, which we'll be able to add
other symbols for later:

export const TYPES = {

 AddOperator: Symbol.for('AddOperator'),

};

This code needs to be written in a new file saved in the src\types\ folder. We
have named this file index.ts.

5. Now, build a first draft for our calculator, which will use AddOperator, via DI:

import { injectable, inject } from 'inversify';

import { TYPES } from '../types';

import { AddOperator } from '../operators/add.operator';

@injectable()

export class Calculator {

 constructor(@inject(TYPES.AddOperator) private addOperator:
AddOperator) {}

 evaluate(expression: string) {

 const expressionParts = expression.match(/[\d\.]+|\D+/g);

 if (expressionParts === null) return null;

 // for now, we're only going to support basic expressions:
X+Y
 const [operandA, operator, operandB] = expressionParts;

 if (operator !== this.addOperator.symbol) {

 throw new Error(`Unsupported operator. Expected ${this.
addOperator.symbol}, received: ${operator}.`);
 }

638 | Appendix

 const result = this.addOperator.evaluate(Number(operandA),
Number(operandB));

 return result;

 }

}

Here, we implement a Calculator class that has a single method –
evaluate, which takes in an expression as a string, and returns the result for
that expression. This code needs to be written in a new file called index.ts,
saved in the src/calculator folder.

Note

The current implementation only supports expressions in the form of X+Y
(where X and Y can be any numbers). We'll fix that later in the activity.

Calculator gets AddOperator in DI, and in order to evaluate the expression,
it first runs through a regular expression to split it by numbers, and then
it destructures the result array. Lastly, it uses the evaluate method of
AddOperator to perform the final expression evaluation.

This means that the calculator's responsibility is only to destructure the
expression into its individual parts, and then pass it off to AddOperator to
handle the math evaluation logic. This demonstrates how using DI helps to retain
the single responsibility principle of SOLID.

6. Configure the IoC container (in the src/ioc.config.ts file) so that
Calculator can receive AddOperator when it asks for TYPES.
AddOperator:

import { Container } from 'inversify';

import { Calculator } from './calculator/index';

import { Operator } from './interfaces/operator.interface';

import { AddOperator } from './operators/add.operator';

import { TYPES } from './types';

export const container = new Container();

container.bind<Operator>(TYPES.AddOperator).to(AddOperator);

container.bind(Calculator).toSelf();

Chapter 08: Dependency Injection in TypeScript | 639

7. Finally, our main file (src/main.ts), which will kick things off when we run
the application, is as follows:

import 'reflect-metadata';

import { Calculator } from './calculator/index';

import { container } from './ioc.config';

const calculator = container.get(Calculator);

try {

 const result = calculator.evaluate('13+5');

 console.log('result is', result);

} catch (err) {

 console.error(err);

}

This is just using our previously defined IoC container and asking it for a
Calculator instance. This is how we ask for instances of symbols explicitly
in InversifyJS in an imperative API, which we need here, since we want to kick
things off. Since InversifyJS is the one creating Calculator, it also looks at
its constructor and sees that we've asked for a TYPES.AddOperator, which
it then looks up in the IoC container again to resolve and gives that to the
calculator's constructor.

Once you run this file, you should obtain the following output:

result is 18

Note that you can either run the code by executing npm start in the
activity-starter folder or by executing npx ts-node main.ts in the
src folder.

Note

If the AddOperator class were also to require dependencies using @
inject, the same process described above would be repeated again to
get them, and so on recursively until all dependencies have been resolved.

640 | Appendix

8. Next, we can implement the other operators, similar to how we did with
AddOperator – just replace the symbol with the relevant one (-, *, /) and the
evaluate method's implementation with the relevant math operation:

9. Here is the code for SubtractOperator (subtract.operator.ts):

// operators/subtract.operator.ts

import { injectable } from 'inversify';

import { Operator } from '../interfaces/operator.interface';

@injectable()

export class SubtractOperator implements Operator {

 readonly symbol = '-';

 public evaluate(a: number, b: number) {

 return a - b;

 }

}

10. Here is the code for MultiplyOperator (multiply.operator.ts):

// operators/multiply.operator.ts

import { injectable } from 'inversify';

import { Operator } from '../interfaces/operator.interface';

@injectable()

export class MultiplyOperator implements Operator {

 readonly symbol = '*';

 public evaluate(a: number, b: number) {

 return a * b;

 }

}

11. Here is the code for DivideOperator (divide.operator.ts):

// operators/divide.operator.ts

import { injectable } from 'inversify';

import { Operator } from '../interfaces/operator.interface';

@injectable()

Chapter 08: Dependency Injection in TypeScript | 641

export class DivideOperator implements Operator {

 readonly symbol = '/';

 public evaluate(a: number, b: number) {

 return a / b;

 }

}

Now, instead of creating an injection token for each Operator, injecting
each one into Calculator, and then acting on each, we can create a more
generic implementation of Calculator with the help of the @multiInject
decorator. This decorator allows an injection token to be specified and an
array of all implementations registered for that token to be obtained. This way,
Calculator is not even coupled to an abstraction for any specific operator
and only gets a dynamic list of operators, which can have any implementation as
long as it conforms to the Operator interface.

12. Update the types/index.ts file with the following code:

export const TYPES = {

 Operator: Symbol.for('Operator'),

};

This replaces our AddOperator symbol from earlier with a more generic one.

13. Update the calculator app code (src/calculator/index.ts):

import { injectable, multiInject } from 'inversify';

import { Operator } from '../interfaces/operator.interface';

import { tryParseNumberString, tryParseOperatorSymbol } from "../
utils/math";
import { TYPES } from '../types';

@injectable()

export class Calculator {

 constructor(@multiInject(TYPES.Operator) private operators:
Operator[]) {}

 evaluate(expression: string) {

 // same as before…

 }

}

642 | Appendix

Note that in further steps, you will need to modify the preceding code to include
two functions, tryParseNumberString and tryParseOperatorSymbol.
Both these functions are created in the math.ts file placed in the src/utils
folder.

14. Update the ioc.config.ts file:

import { Container } from 'inversify';

import { Calculator } from './calculator';

import { Operator } from './interfaces/operator.interface';

import { AddOperator } from './operators/add.operator';

import { DivideOperator } from './operators/divide.operator';

import { MultiplyOperator } from './operators/multiply.operator';

import { SubtractOperator } from './operators/subtract.operator';

import { TYPES } from './types';

export const container = new Container();

container.bind<Operator>(TYPES.Operator).to(AddOperator);

container.bind<Operator>(TYPES.Operator).to(SubtractOperator);

container.bind<Operator>(TYPES.Operator).to(MultiplyOperator);

container.bind<Operator>(TYPES.Operator).to(DivideOperator);

container.bind(Calculator).toSelf();

15. Next, fix the naïve evaluate method of Calculator to be more generic,
too. First, instead of relying on a specific token, map all expression parts and
parse them:

evaluate(expression: string) {

 // ...

 const parsedExpressionParts = expressionParts.map(part => {

 const numberParseResult = tryParseNumberString(part);

 if (numberParseResult.isNumberString) return
numberParseResult.number;
 const operatorParseResult = tryParseOperatorSymbol(part,
this.operators);
 if (operatorParseResult.isOperatorSymbol) return
operatorParseResult.operator;

 throw new Error(`Unexpected part: ${part}`);

 });

 }

Chapter 08: Dependency Injection in TypeScript | 643

This will give us back an array of numbers and operators.

Note

Try to implement tryParseNumberString and
tryParseOperatorSymbol yourself. However, you can refer to
utils/math.ts to help you complete this step.

16. Then, reduce this array to get our final result:

evaluate(expression: string) {

 // ...

 const { result } = parsedExpressionParts.reduce<{ result: number;
queuedOperator: Operator | null }>((acc, part) => {
 if (typeof part === 'number') {

 // this is the first number we've encountered, just set
the result to that.
 if (acc.queuedOperator === null) {

 return { ...acc, result: part };

 }

 // there's a queued operator – evaluate the previous
result with this and
 // clear the queued one.

 return {

 queuedOperator: null,

 result: acc.queuedOperator.evaluate(acc.result,
part),
 };

 }

 // this is an operator – queue it for later execution

 return {

 ...acc,

 queuedOperator: part,

 };

 }, { result: 0, queuedOperator: null });

 return result;

}

644 | Appendix

17. Simplify the code in the ioc.config.ts file even further by leveraging barrels.
Create operator/index.ts with the following code:

// operators/index.ts

export * from './add.operator';

export * from './divide.operator';

export * from './multiply.operator';

export * from './subtract.operator';

18. Update the ioc.config.ts file:

// ioc.config.ts

import { Container } from 'inversify';

import { Calculator } from './calculator';

import { Operator } from './interfaces/operator.interface';

import * as Operators from './operators';

import { TYPES } from './types';

export const container = new Container();

Object.values(Operators).forEach(Operator => {

 container.bind<Operator>(TYPES.Operator).to(Operator);

});

container.bind(Calculator).toSelf();

This means we now import an Operators object from the barrel file, which
includes everything that's exposed there. We take the values of that barrel object
and bind each one to TYPES.Operator, generically.

This means that adding another Operator object only requires us to
create a new class that implements the Operator interface and add it to
our operators/index.ts file. The rest of the code should work without
any changes.

19. Our main.ts file is changed to a slightly more complicated expression:

import 'reflect-metadata';

import { Calculator } from './calculator';

import { container } from './ioc.config';

Chapter 08: Dependency Injection in TypeScript | 645

const calculator = container.get(Calculator);

try {

 const result = calculator.evaluate('13*10+20');

 console.log('result is', result);

} catch (err) {

 console.error(err);

}

When you run the main.ts file (using npx ts-node main.ts), you should
obtain the following output:

result is 150

Bonus:

1. As a bonus, let's say that we want some reporting on the operations performed
in the calculator. We can add logging pretty easily without too many changes.
We'll create two reporting implementations, one to the console and another to
a filesystem:

Note

The filesystem implementation will only work in a Node.js environment,
since it will use some modules only available to it.

2. Define the Logger interface:

export interface Logger {

 log(message: string, ...args: any[]): void;

 warn(message: string, ...args: any[]): void;

 error(message: string, ...args: any[]): void;

}

This will serve as the public API that the consumers wanting a logger can use,
and that our implementations will need to adhere to.

3. Create the console-based implementation of Logger first:

import { injectable } from 'inversify';

import { Logger } from '../interfaces/logger.interface';

@injectable()

646 | Appendix

export class ConsoleLogger implements Logger {

 log(message: string, ...args: any[]) {

 console.log('[LOG]', message, ...args);

 }

 warn(message: string, ...args: any[]) {

 console.warn('[WARN]', message, ...args);

 }

 error(message: string, ...args: any[]) {

 console.error('[ERROR]', message, ...args);

 }

}

This is a simple wrapper class around the console object that's built into
browser engines and Node.js. It adheres to our Logger interface, and so allows
consumers to depend on it. For the example, we've also added the type of the
message to the beginning of the actual output.

4. Next, create an injection token for it, and register it in our container. The
updated code for the types/index.ts file is as follows:

// types/index.ts

export const TYPES = {

 Operator: Symbol.for('Operator'),

 Logger: Symbol.for('Logger'),

};

The updated code for the src/ioc.config.ts file is as follows:

// ioc.config.ts

import { Container } from 'inversify';

import { Calculator } from './calculator';

import { Logger } from './interfaces/logger.interface';

import { Operator } from './interfaces/operator.interface';

import { ConsoleLogger } from './logger/console.logger';

import * as Operators from './operators';

import { TYPES } from './types';

export const container = new Container();

Object.values(Operators).forEach(Operator => {

 container.bind<Operator>(TYPES.Operator).to(Operator);

Chapter 08: Dependency Injection in TypeScript | 647

});

container.bind(Calculator).toSelf();

container.bind<Logger>(TYPES.Logger).to(ConsoleLogger);

5. Finally, use the logger in our Calculator class:

import { injectable, multiInject, inject, optional } from
'inversify';
import { Operator } from '../interfaces/operator.interface';

import { TYPES } from '../types';

import { tryParseNumberString, tryParseOperatorSymbol } from '../
utils/math';
import { Logger } from '../interfaces/logger.interface';

@injectable()

export class Calculator {

 constructor(

 @multiInject(TYPES.Operator) private operators: Operator[],

 @inject(TYPES.Logger) @optional() private logger?: Logger

) {}

 evaluate(expression: string) {

 // ...

 const { result } = parsedExpressionParts.reduce<{ result:
number; queuedOperator: Operator | null }>(...);

 this.logger && this.logger.log(`Calculated result of
expression: ${expression} to be: ${result}`);

 return result;

 }

}

Notice that we use the @optional decorator to indicate to InversifyJS that
Calculator doesn't require a Logger to operate, but if it has one it can inject,
Calculator can use it. This is also why it's marked as an optional argument in
the constructor, and why we need to check whether it exists before calling the
log method.

The output to the console when running it should be as follows:

[LOG] Calculated result of expression:13*10+20 is 150

648 | Appendix

Now, let's say we want to replace our console-based logger with a file-based
one, which will persist across runs so that we can track the calculator's
evaluation history.

6. Create a FileLogger class that implements Logger:

import fs from 'fs';

import { injectable } from 'inversify';

import { Logger } from '../interfaces/logger.interface';

@injectable()

export class FileLogger implements Logger {

 private readonly loggerPath: string = '/tmp/calculator.log';

 log(message: string, ...args: any[]) {

 this.logInternal('LOG', message, args);

 }

 warn(message: string, ...args: any[]) {

 this.logInternal('WARN', message, args);

 }

 error(message: string, ...args: any[]) {

 this.logInternal('ERROR', message, args);

 }

 private logInternal(level: string, message: string, ...args:
any[]) {
 fs.appendFileSync(this.loggerPath, this.
logLineFormatter(level, message, args));
 }

 private logLineFormatter(level: string, message: string, ...args:
any[]) {
 return `[${level}]: ${message}${args}\n`;

 }

}

Chapter 08: Dependency Injection in TypeScript | 649

7. And finally, all we need to do in order to replace our console-based logger with a
file-based one is a single-line change in our IoC container configuration.

For console-based logging, use this command:

container.bind<Logger>(TYPES.Logger).to(ConsoleLogger);

For file-based logging, use this command:

container.bind<Logger>(TYPES.Logger).to(FileLogger);

Make sure to import this logger correctly in the ioc.config.ts file.

The final output to the file is as follows:

Figure 8.8: Final output of the file-based logger in activity-starter/src//tmp/calculator.log,
after changing the app to use it

650 | Appendix

Chapter 09: Generics and Conditional Types

Activity 9.01: Creating a DeepPartial<T> Type

Solution:

Let's build this type up, step by step:

1. First, let's create a PartialPrimitive type:

type PartialPrimitive = string | number | boolean | symbol | bigint |
Function | Date;

2. Then, let's start by defining a basic DeepPartial<T> type:

type DeepPartial<T> = T extends PartialPrimitive ? T : Partial<T>;

Next, we need to handle more complex structures – such as arrays, sets, and
maps. These require using the infer keyword, and in addition to that, require
some more "manual wiring" for each of these types.

3. Let's start with adding handling for the Array type:

type DeepPartial<T> =

 T extends PartialPrimitive

 ? T

 : T extends Array<infer U>

 ? Array<DeepPartial<U>>

 : Partial<T>;

This would've worked, but due to current limitations in TypeScript at the
time of writing, this doesn't compile, since DeepPartial<T> circularly
references itself:

Figure 9.17: Current TypeScript version limitation not allowing generic
types to reference themselves

Chapter 09: Generics and Conditional Types | 651

To work around this, we'll create a helper type, DeepPartialArray<T>, and
use it:

interface DeepPartialArray<T> extends Array<DeepPartial<T>> {}

type DeepPartial<T> =

 T extends PartialPrimitive

 ? T

 : T extends Array<infer U>

 ? DeepPartialArray<U>

 : Partial<T>;

This works around the problem and compiles fine.

4. Next, to support a Set, a similar approach to what we did in the previous step
is needed, so we'll create an interface to serve as a "middle-man" for building
the entire generic type:

interface DeepPartialArray<T> extends Array<DeepPartial<T>> {}

interface DeepPartialSet<T> extends Set<DeepPartial<T>> {}

type DeepPartial<T> = T extends PartialPrimitive

 ? T

 : T extends Array<infer U>

 ? DeepPartialArray<U>

 : T extends Set<infer U>

 ? DeepPartialSet<U>

 : Partial<T>;

5. Similarly to arrays and sets, maps also need the approach wherein we need
create an interface to serve as a "middle-man" for building the entire
generic type:

interface DeepPartialArray<T> extends Array<DeepPartial<T>> {}

interface DeepPartialSet<T> extends Set<DeepPartial<T>> {}

interface DeepPartialMap<K, V> extends Map<DeepPartial<K>,
DeepPartial<V>> {}

type DeepPartial<T> = T extends PartialPrimitive

 ? T

 : T extends Array<infer U>

 ? DeepPartialArray<U>

 : T extends Map<infer K, infer V>

652 | Appendix

 ? DeepPartialMap<K, V>

 : T extends Set<infer U>

 ? DeepPartialSet<U>

 : Partial<T>;

Note

This workaround is no longer needed as of TypeScript 3.7.

6. Lastly, let's make our DeepPartial<T> type support objects too:

type DeepPartial<T> = T extends PartialPrimitive

 ? T

 : T extends Array<infer U>

 ? DeepPartialArray<U>

 : T extends Map<infer K, infer V>

 ? DeepPartialMap<K, V>

 : T extends Set<infer U>

 ? DeepPartialSet<U>

 : T extends {}

 ? { [K in keyof T]?: DeepPartial<T[K]> }

 : Partial<T>;

This completes the DeepPartial<T> implementation.

A great use case for the DeepPartial<T> type is in a server-side PATCH
method handler, which updates a given resource with new data. In PATCH
requests, all fields are usually optional:

import express from 'express';

const app = express();

app.patch('/users/:userId', async (req, res) => {

 const userId = req.params.userId;

 const userUpdateData: DeepPartial<User> = req.body;

Chapter 09: Generics and Conditional Types | 653

 const user = await User.getById(userId);

 await user.update(userUpdateData);

 await user.save();

 res.status(200).end(user);

});

Notice that we use DeepPartial<User> to correctly type the body of the
request, before passing it in the update method:

Figure 9.18: The correctly typed request body

As can be seen in the preceding figure, due to the usage of DeepPartial<T>,
the request's body is typed correctly, such that all fields are optional, including
nested ones.

654 | Appendix

Chapter 10: Event Loop and Asynchronous Behavior

Activity 10.01: Movie Browser Using XHR and Callbacks

Solution:

1. In the script.ts file, locate the search function and verify that it takes a
single string parameter and that its body is empty.

2. Construct a new XMLHttpRequest object:

 const xhr = new XMLHttpRequest();

3. Construct a new string for the search result URL using the
getSearchUrl method:

 const url = getSearchUrl(value);

4. Call the open and send methods of the xhr object:

 xhr.open('GET', url);
 xhr.send();

5. Add an event handler for the xhr object's onload event. Take the
response and parse it as a JSON object. Store the result in a variable of the
SearchResultApi interface. This data will have the results of our search in a
results field. If we get no results, this means that our search failed:

 xhr.onload = function() {
 const data = JSON.parse(this.response) as SearchResultApi;
 }

6. If the search returned no results, call the clearResults method:

 if (data.results.length === 0) {
 clearResults(value);
 }

7. If the search returned some results, just take the first one and store it in a
variable, ignoring the other ones:

 else {
 const resultMovie = data.results[0];
 }

8. Inside the onload handler, in the successful search branch, create a new
XMLHttpRequest object:

 const movieXhr = new XMLHttpRequest();

Chapter 10: Event Loop and Asynchronous Behavior | 655

9. Construct a new string for the search result URL using the
getMovieUrl method:

 const movieUrl = getMovieUrl(resultMovie.id);

10. Call the open and send method of the constructed xhr object:

 movieXhr.open('GET', movieUrl);
 movieXhr.send();

11. Add an event handler for the xhr object's onload event. Take the
response and parse it as a JSON object. Store the result in a variable of the
MovieResultApi interface. This response will have the general data for our
movie, specifically, everything except the people who were involved in the movie.
We will need to have another call to the API to get the data about the people:

 movieXhr.onload = function () {
 const movieData: MovieResultApi = JSON.parse(this.response);

12. Inside the onload handler, create a new XMLHttpRequest object:

 const peopleXhr = new XMLHttpRequest();

13. Construct a new string for the search result URL using the
getPeopleUrl method:

 const peopleUrl = getPeopleUrl(resultMovie.id);

14. Call the open and send method of the constructed xhr object:

 peopleXhr.open('GET', peopleUrl);
 peopleXhr.send();

15. Add an event handler for the xhr object's onload event. Take the
response, and parse it as a JSON object. Store the result in a variable of the
PeopleResultApi interface. This response will have data about the people
who were involved in the movie:

 const data = JSON.parse(this.response) as PeopleResultApi;

16. Now we actually have all the data we need, so we can actually create our own
object, inside the people onload handler, which is inside the movie onload
handler, which is inside the search onload handler.

The people data has cast and crew properties. We'll only take the first six cast
members, so first sort the cast property according to the order property of
the cast members. Then slice off the first six cast members into a new array:

 data.cast.sort((f, s) => f.order - s.order);
 const mainActors = data.cast.slice(0, 6);

656 | Appendix

17. Transform the cast data (which is CastResultApi objects) into your
own Character objects. We need to map the character field of
CastResultApi to the name field of Character, the name field to the
actor name, and the profile_path field to the image property:

 const characters: Character[] = mainActors.map(actor => ({
 name: actor.character,
 actor: actor.name,
 image: actor.profile_path
 }))

18. From the crew property of the people data, we'll only need the director
and the writer. Since there can be multiple directors and writers, we'll get the
names of all directors and writers and concatenate them, respectively. For the
directors, from the crew property, filter the people who have a department
of Directing and a job of Director. For those objects, take the name
property, and join it together with an & in between:

 const directors = data.crew
 .filter(person => person.department === "Directing" && person.
job === "Director")
 .map(person => person.name)
 const directedBy = directors.join(" & ");

19. For the writers, from the crew property, filter the people who have a
department of Writing and a job of Writer. For those objects, take the
name property, and join it together with an & in between:

 const writers = data.crew
 .filter(person => person.department === "Writing" && person.
job === "Writer")
 .map(person => person.name);
 const writtenBy = writers.join(" & ");

20. Create a new Movie object (using object literal syntax). Fill in all the properties
of the Movie object using the data from the movie and people responses we've
prepared so far:

 const movie: Movie = {
 id: movieData.id,
 title: movieData.title,
 tagline: movieData.tagline,
 releaseDate: new Date(movieData.release_date),
 posterUrl: movieData.poster_path,
 backdropUrl: movieData.backdrop_path,
 overview: movieData.overview,
 runtime: movieData.runtime,

Chapter 10: Event Loop and Asynchronous Behavior | 657

 characters: characters,
 directedBy: directedBy,
 writenBy: writtenBy
 }

21. Call the showResults function with the movie we constructed:

 showResults(movie);

22. In your parent directory (Activity01 in this case), install dependencies with
npm i.

23. Compile the program using tsc ./script.ts ./interfaces.ts ./
display.ts.

24. Verify that the compilation ended successfully.

25. Open index.html using the browser of your choice.

You should see the following in your browser:

Figure 10.5: The final web page

658 | Appendix

Activity 10.02: Movie Browser Using fetch and Promises

Solution:

1. In the script.ts file, locate the search function and verify that it takes a
single string parameter and that its body is empty.

2. Above the search function, create a helper function called getJsonData.
This function will use the fetch API to get data from an endpoint and format it
as JSON. It should take a single string called url as a parameter, and it should
return a promise:

const getJsonData = (url: string):Promise<any> => {
}

3. In the body of the getJsonData function, add code that calls the fetch
function with the url parameter, and then call the json method on the
returned response:

const getJsonData = (url: string):Promise<any> => {
 return fetch(url)
 .then(response => response.json());
}

4. In the search method, construct a new string for the search result URL using
the getSearchUrl method:

 const searchUrl = getSearchUrl(value);

5. Call the getJsonData function with searchUrl as a parameter:

 return getJsonData(searchUrl)

6. Add a then handler to the promise returned from getJsonData. The handler
takes a single parameter of the type SearchResultApi:

 return getJsonData(url)
 .then((data:SearchResultApi) => {
 }

7. In the body of the handler, check whether we have any results and if we don't,
throw an error. If we do have results, return the first item. Note that the handler
returns an object with id and title properties, but the then method actually
returns a promise of that data. This means that after the handler, we can chain
other then calls:

 .then((data:SearchResultApi) => {
 if (data.results.length === 0) {
 throw Error("Not found");
 }

Chapter 10: Event Loop and Asynchronous Behavior | 659

 return data.results[0];
 })

8. Add another then call to the previous handler. This handler will take a
movieResult parameter that contains the id and title of the movie. Use
the id property to call the getMovieUrl and getPeopleUrl methods to,
respectively, get the correct URLs for the movie details and for the cast and crew:

 })
 .then(movieResult => {
 const movieUrl = getMovieUrl(movieResult.id);
 const peopleUrl = getPeopleUrl(movieResult.id);
 })

9. After getting the URLs, call the getJsonData function with both
of them, and assign the resulting values to variables. Note that
the getJsonData(movieUrl) call will return a promise of
MovieResultApi, and getJsonData(peopleUrl) will return a promise
of PeopleResultApi. Assign those result values to variables called
dataPromise and peoplePromise:

 const movieUrl = getMovieUrl(movieResult.id);
 const peopleUrl = getPeopleUrl(movieResult.id);
 const dataPromise: Promise<MovieResultApi> =
getJsonData(movieUrl);
 const peoplePromise: Promise<PeopleResultApi> =
getJsonData(peopleUrl);

10. Call the static Promise.all method with dataPromise and
peoplePromise as parameters. This will create another promise based on
those two values, and this promise will be resolved successfully if and only if
both (that is, all) promises that are contained within resolve successfully. Its
return value will be a promise of an array of results:

 const resultPromise = Promise.all([dataPromise, peoplePromise]);

11. Return the promise generated by the Promise.all call from the handler:

 return resultPromise;
 })

12. Add another then handler to the chain. This handler will take the array
returned from Promise.all as a single parameter:

 })
 .then(dataResult => {
 });

660 | Appendix

13. Deconstruct the parameter into two variables. The first element of the array
should be the movieData variable of type MovieResultApi, and the
second element of the array should be the peopleData variable of type
PeopleResultApi:

 const [movieData, peopleData] = dataResult // we can actually let
TypeScripts type inference pick out the types

14. The people data has cast and crew properties. We'll only take the first six cast
members, so first sort the cast property according to the order property of
the cast members. Then slice off the first six cast members into a new array:

 peopleData.cast.sort((f, s) => f.order - s.order);
 const mainActors = peopleData.cast.slice(0, 6);

15. Transform the cast data (which is CastResultApi objects) into our
own Character objects. We need to map the character field of
CastResultApi to the name field of Character, the name field to the
actor name, and the profile_path field to the image property:

 const characters :Character[] = mainActors.map(actor => ({
 name: actor.character,
 actor: actor.name,
 image: actor.profile_path
 }))

16. From the crew property of the people data, we'll only need the director
and the writer. Since there can be multiple directors and writers, we'll get the
names of all directors and writers and concatenate them, respectively. For the
directors, from the crew property, filter the people who have a department
of Directing and a job of Director. For those objects, take the name
property, and join it together with an & in between:

 const directors = peopleData.crew
 .filter(person => person.department === "Directing" && person.
job === "Director")
 .map(person => person.name)
 const directedBy = directors.join(" & ");

17. For the writers, from the crew property, filter the people who have a
department of Writing and a job of Writer. For those objects, take the
name property, and join it together with an & in between:

 const writers = peopleData.crew
 .filter(person => person.department === "Writing" && person.
job === "Writer")
 .map(person => person.name);
 const writtenBy = writers.join(" & ");

Chapter 10: Event Loop and Asynchronous Behavior | 661

18. Create a new Movie object (using object literal syntax). Fill in all the properties
of the Movie object using the data from the movie and people responses we've
prepared so far:

 const movie: Movie = {
 id: movieData.id,
 title: movieData.title,
 tagline: movieData.tagline,
 releaseDate: new Date(movieData.release_date),
 posterUrl: movieData.poster_path,
 backdropUrl: movieData.backdrop_path,
 overview: movieData.overview,
 runtime: movieData.runtime,
 characters: characters,
 directedBy: directedBy,
 writenBy: writtenBy
 }

19. Return the Movie object from the handler:

 return movie;
 });

Note that we did not do any UI interactions in our code. We just received a
string, did some promise calls, and returned a value. The UI work can now be
done in UI-oriented code. In this case, that's in the click event handler of
the search button. We should simply add a then handler to the search call
that will call the showResults method, and a catch handler that will call the
clearResults method:

 search(movieTitle)
 .then(movie => showResults(movie))
 .catch(_ => clearResults(value));

The output should be the same as the previous activity.

662 | Appendix

Activity 10.03: Movie Browser Using fetch and async/await

Solution:

1. In the script.ts file, locate the search function and verify that it takes a
single string parameter and that its body is empty. Note that this function is now
marked with the async keyword, which allows us to use the await operator:

const getJsonData = (url: string):Promise<any> => {
}

2. In the body of the getJsonData function, add code that calls and awaits the
fetch function with the url parameter, and then call calls the json method
on the returned response:

const getJsonData = (url: string):Promise<any> => {
 const response = await fetch(url);
 return response.json();
}

3. In the search method, construct a new string for the search result URL using
the getSearchUrl method:

 const url = getSearchUrl(value);

4. Call the getJsonData function with the searchUrl as a parameter, and
await the result. Place the result in the SearchResultApi variable:

 const data: SearchResultApi = await getJsonData(url);

5. Check whether we have any results and if we don't, throw an error. If we do
have results, set the first item of the result property in a variable called
movieResult. This object will contain the id and title properties of
the movie:

 if (data.results.length === 0) {
 throw Error("Not found");
 }
 const movieResult = data.results[0];

6. Use the id property to call the getMovieUrl and getPeopleUrl methods
to, respectively, get the correct URLs for the movie details and for the cast
and crew:

 const movieUrl = getMovieUrl(movieResult.id);
 const peopleUrl = getPeopleUrl(movieResult.id);

Chapter 10: Event Loop and Asynchronous Behavior | 663

7. After getting the URLs, call the getJsonData function with both and assign the
resulting values to variables. Note that the getJsonData(movieUrl) call will
return a promise of MovieResultApi, and getJsonData(peopleUrl) will
return a promise of PeopleResultApi. Assign those result values to variables
called dataPromise and peoplePromise:

 const dataPromise: Promise<MovieResultApi> =
getJsonData(movieUrl);
 const peoplePromise: Promise<PeopleResultApi> =
getJsonData(peopleUrl);

8. Call the static Promise.all method with dataPromise and
peoplePromise as parameters. This will create another promise based on
those two values, and this promise will be resolved successfully if and only if
both (that is, all) promises that are contained within resolve successfully. Its
return value will be a promise of an array of results. await this promise, and
place its result in a variable of type array:

 const dataArray = await Promise.all([dataPromise,
peoplePromise]);

9. Deconstruct that array into two variables. The first element of the array
should be the movieData variable of type MovieResultApi, and the
second element of the array should be the peopleData variable of type
PeopleResultApi:

 const [movieData, peopleData] = dataArray;

10. The people data has cast and crew properties. We'll only take the first six cast
members, so first sort the cast property according to the order property of
the cast members. Then slice off the first six cast members into a new array:

 peopleData.cast.sort((f, s) => f.order - s.order);
 const mainActors = peopleData.cast.slice(0, 6);

11. Transform the cast data (which is CastResultApi objects) into our
own Character objects. We need to map the character field of
CastResultApi to the name field of Character, the name field to the
actor name, and the profile_path field to the image property:

 const characters :Character[] = mainActors.map(actor => ({
 name: actor.character,
 actor: actor.name,
 image: actor.profile_path
 }))

664 | Appendix

12. From the crew property of the people data, we'll only need the director and
the writer. Since there can be multiple directors and writers, we'll get the
names of all directors and writers, and concatenate them, respectively. For the
directors, from the crew property, filter the people who have a department
of Directing and a job of Director. For those objects, take the name
property, and join it together with an & in between:

 const directors = peopleData.crew
 .filter(person => person.department === "Directing" && person.
job === "Director")
 .map(person => person.name)
 const directedBy = directors.join(" & ");

13. For the writers, from the crew property, filter the people who have a
department of Writing and a job of Writer. For those objects, take the
name property, and join it together with an & in between:

 const writers = peopleData.crew
 .filter(person => person.department === "Writing" && person.
job === "Writer")
 .map(person => person.name);
 const writtenBy = writers.join(" & ");

14. Create a new Movie object (using object literal syntax). Fill in all the properties
of the Movie object using the data from the movie and people responses we've
prepared so far:

 const movie: Movie = {
 id: movieData.id,
 title: movieData.title,
 tagline: movieData.tagline,
 releaseDate: new Date(movieData.release_date),
 posterUrl: movieData.poster_path,
 backdropUrl: movieData.backdrop_path,
 overview: movieData.overview,
 runtime: movieData.runtime,
 characters: characters,
 directedBy: directedBy,
 writenBy: writtenBy
 }

15. Return the Movie object from the function:

 return movie;

Chapter 10: Event Loop and Asynchronous Behavior | 665

16. Note that we did not do any UI interactions in our code. We just received a string,
did some promise calls, and returned a value. The UI work can now be done in
UI-oriented code. In this case, that's in the click event handler of the search
button. We should simply await the result of the search call and then call the
showResults method with it. We can use a standard catch expression to
handle any errors:

 try {
 const movie = await search(movieTitle);
 showResults(movie);
 } catch {
 clearResults(movieTitle);
 }

The output should be the same as the previous activity.

666 | Appendix

Chapter 11: Higher-Order Functions and Callbacks

Activity 11.01: Higher-Order Pipe Function

Solution:

In this activity, we'll build a higher-order pipe function that accepts functions as
arguments, and composes them from left to right, returning a function that accepts
the arguments of the first function, and returns the type of the last function. When
the returned function is run, it iterates over the given functions, feeding the return
value of each function to the next one:

1. Let's start by defining a type definition for the supported functions to compose, a
function that accepts one argument of type T and returns one of type R:

type UnaryFunction<T, R> = T extends void ? () => R : (arg: T) => R;

As mentioned, we'll only support functions accepting up to one argument,
for simplicity.

Note that in order to deal with the special case of 0 arguments, we need to check
whether T extends void and returns a parameterless function.

2. Next, let's start by writing a simple implementation of the pipe function, one
that supports only a single function, making it essentially an identity function:

function pipe<R>(fn: UnaryFunction<void, R>): UnaryFunction<void, R>;

function pipe<T, R = T>(fn: UnaryFunction<T, R>): UnaryFunction<T, R>
{
 return fn;

}

Note that we require two overloads for the function, one for the special case of
no parameters, and another for a single-parameter function.

3. Let's expand this to support two functions by adding another overload:

function pipe<R>(fn: UnaryFunction<void, R>): UnaryFunction<void, R>;

function pipe<T, R = T>(fn: UnaryFunction<T, R>): UnaryFunction<T,
R>;
function pipe<T, A, R>(fn1: UnaryFunction<T, A>, fn2:
UnaryFunction<A, R>): UnaryFunction<T, R>;
function pipe<T, A, R>(fn1: UnaryFunction<T, A>, fn2?:
UnaryFunction<A, R>) {
 // TODO: Support two functions

}

Chapter 11: Higher-Order Functions and Callbacks | 667

The previous implementation no longer works, since we need to support both
a single function, as well as multiple functions, so we can no longer just return
fn. We'll add a naïve implementation for now and expand it to a more generic
solution in the next steps.

4. The naïve implementation for supporting two functions is to simply check
whether fn2 is undefined – if it is, we only have a single function at hand, and
can simply return fn1. Otherwise, we need to return a function that composes
fn1 and fn2 on the given argument:

function pipe<R>(fn: UnaryFunction<void, R>): UnaryFunction<void, R>;

function pipe<T, R = T>(fn: UnaryFunction<T, R>): UnaryFunction<T,
R>;
function pipe<T, A, R>(fn1: UnaryFunction<T, A>, fn2:
UnaryFunction<A, R>): UnaryFunction<T, R>;
function pipe<T, A, R>(fn1: UnaryFunction<T, A>, fn2?:
UnaryFunction<A, R>) {
 if (fn2 === undefined) {

 return fn1;

 }

 return (arg: T) => {

 return fn2(fn1(arg));

 };

}

5. We can persist with the preceding approach, but it is tedious, and supporting
more functions means changing the implementation. Instead, we can make the
actual implementation accept an array of functions and reduce them, starting
with arg as the initial value, and running the current function, fn, on the
accumulator (the previous result). Let's do that, while still only supporting up to
two functions:

function pipe<R>(fn: UnaryFunction<void, R>): UnaryFunction<void, R>;

function pipe<T, R = T>(fn: UnaryFunction<T, R>): UnaryFunction<T,
R>;
function pipe<T, A, R>(fn1: UnaryFunction<T, A>, fn2:
UnaryFunction<A, R>): UnaryFunction<T, R>;
function pipe<T>(...fns: UnaryFunction<any, any>[]):
UnaryFunction<any, any> {
 return (arg: T) => {

 return fns.reduce((prev, fn) => fn(prev), arg);

 };

}

668 | Appendix

6. Lastly, we can expand our support for more functions by only needing to change
the function declaration by adding another overload with the correct type:

In the case of three functions:

function pipe<T, A, B, R>(

 fn1: UnaryFunction<T, A>,

 fn2: UnaryFunction<A, B>,

 fn3: UnaryFunction<B, R>,

): UnaryFunction<T, R>;

In the case of four functions:

function pipe<T, A, B, C, R>(

 fn1: UnaryFunction<T, A>,

 fn2: UnaryFunction<A, B>,

 fn3: UnaryFunction<B, C>,

 fn4: UnaryFunction<C, R>,

): UnaryFunction<T, R>;

 In the case of five functions:

function pipe<T, A, B, C, D, R>(

 fn1: UnaryFunction<T, A>,

 fn2: UnaryFunction<A, B>,

 fn3: UnaryFunction<B, C>,

 fn4: UnaryFunction<C, D>,

 fn5: UnaryFunction<D, R>,

): UnaryFunction<T, R>;

In each overload, we have the first generic as T – this is the type of argument
that the returned function will have, and R – the return type of the returned
function. Between them we have A, B, C, and so on, as the interim return type/
argument type of the second…second to last functions. For all the preceding
steps, make sure to export the functions by adding export before the
function keyword.

Chapter 11: Higher-Order Functions and Callbacks | 669

Finally, we can use our pipe function to compose any functions we want, while
staying completely type-safe:

const composedFn = pipe(

 (x: string) => x.toUpperCase(),

 x => [x, x].join(','),

 x => x.length,

 x => x.toString(),

 x => Number(x),

);

console.log('result is:', composedFn('hello'))

Running the this code should result in the following output:

result is: 11

670 | Appendix

Chapter 12: Guide to Promises in TypeScript

Activity 12.01: Building a Promise App

Solution:

1. We can get started the same way we started building our API from the sample
from GitHub:

npm i

The only dependencies we're using here are http-server to power our web
application and typescript to transpile our code. Now that our project is set
up, let's quickly create an index.html file:

<html>

 <head>

 <title>The TypeScript Workshop - Activity 12.1</title>

 <link href="styles.css" rel="stylesheet"></link>

 </head>

 <body>

 <input type="text" placeholder="What promise will you make?"
id="promise-input"> <button id="promise-save">save</button>
 <div>

 <table id="promise-table">

 </div>

 </body>

 <script type="module" src="app.js"></script>

</html>

2. And then a styles.css file:

body {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 12px;

}

input {

 width: 200;

}

table {

 border: 1px solid;

}

Chapter 12: Guide to Promises in TypeScript | 671

td {

 overflow: hidden;

 white-space: nowrap;

 text-overflow: ellipsis;

}

Now we will create an app.ts file and create a very rough client library that
implements a fetch abstraction similar to what we created in Chapter 3,
Functions. Because TypeScript doesn't run natively in a web browser, we will
need to use tsc to transpile our TypeScript code into JavaScript. There are some
advanced tools such as webpack and Parcel that can help with this, but those
are out of scope for this chapter so we will keep this simple and just use a single
app.ts file.

3. We'll use our PromiseModel interface again in our web app and create a
fetchClient function using currying:

interface PromiseModel {

 id?: number;

 desc: string;

}

const fetchClient = (url: string) => (resource: string) => (method:
string) => (
 body?: PromiseModel

) => {

 return fetch(`${url}/${resource}`, {

 body: body && JSON.stringify(body),

 headers: { "Content-Type": "application/json" },

 method,

 });

};

4. Building on the model of curried fetch functions, let's create some resources:

const api = fetchClient("http://localhost:3000");

const resource = api("promise");

const getAction = resource("get");

const postAction = resource("post");

672 | Appendix

5. These functions handle invoking the resources and updating page elements:

const deleteItem = (id: number) => {

 const resource = api(`promise/${id}`);

 resource("delete")().then(loadItems);

};

const loadItems = () => {

 getAction().then((res) => res.json().then(renderList));

};

const saveItem = () => {

 const input = document.getElementById("promise-input") as
HTMLInputElement;
 if (input.value) {

 postAction({ desc: input.value }).then(loadItems);

 input.value = "";

 }

};

6. Finally, we'll do some ugly HTML manipulation to update the UI:

const renderList = (data: PromiseModel[]) => {

 const table = document.getElementById("promise-table");

 if (table) {

 table.innerHTML = "";

 let tr = document.createElement("tr");

 ["Promise", "Delete"].forEach((label) => {

 const th = document.createElement("th");

 th.innerText = label;

 tr.appendChild(th);

 });

 table.appendChild(tr);

 data.forEach((el) => {

 table.appendChild(renderRow(el));

 });

 }

};

const renderRow = (el: PromiseModel) => {

 const tr = document.createElement("tr");

 const td1 = document.createElement("td");

Chapter 12: Guide to Promises in TypeScript | 673

 td1.innerHTML = el.desc;

 tr.appendChild(td1);

 const td2 = document.createElement("td");

 const deleteButton = document.createElement("button");

 deleteButton.innerText = "delete";

 deleteButton.onclick = () => deleteItem(el.id!);

 td2.appendChild(deleteButton);

 tr.appendChild(td2);

 return tr;

};

document.getElementById("promise-save")?.addEventListener("click",
saveItem);
loadItems();

7. Altogether, the app.ts file looks like this:

interface PromiseModel {

 id?: number;

 desc: string;

}

const fetchClient = (url: string) => (resource: string) => (method:
string) => (
 body?: PromiseModel

) => {

 return fetch(`${url}/${resource}`, {

 body: body && JSON.stringify(body),

 headers: { "Content-Type": "application/json" },

 method,

 });

};

const api = fetchClient("http://localhost:3000");

const resource = api("promise");

const getAction = resource("get");

const postAction = resource("post");

const deleteItem = (id: number) => {

674 | Appendix

 const resource = api(`promise/${id}`);

 resource("delete")().then(loadItems);

};

const loadItems = () => {

 getAction().then((res) => res.json().then(renderList));

};

const saveItem = () => {

 const input = document.getElementById("promise-input") as
HTMLInputElement;
 if (input.value) {

 postAction({ desc: input.value }).then(loadItems);

 input.value = "";

 }

};

const renderList = (data: PromiseModel[]) => {

 const table = document.getElementById("promise-table");

 if (table) {

 table.innerHTML = "";

 let tr = document.createElement("tr");

 ["Promise", "Delete"].forEach((label) => {

 const th = document.createElement("th");

 th.innerText = label;

 tr.appendChild(th);

 });

 table.appendChild(tr);

 data.forEach((el) => {

 table.appendChild(renderRow(el));

 });

 }

};

const renderRow = (el: PromiseModel) => {

 const tr = document.createElement("tr");

 const td1 = document.createElement("td");

 td1.innerHTML = el.desc;

 tr.appendChild(td1);

 const td2 = document.createElement("td");

 const deleteButton = document.createElement("button");

Chapter 12: Guide to Promises in TypeScript | 675

 deleteButton.innerText = "delete";

 deleteButton.onclick = () => deleteItem(el.id!);

 td2.appendChild(deleteButton);

 tr.appendChild(td2);

 return tr;

};

document.getElementById("promise-save")?.addEventListener("click",
saveItem);
loadItems();

It's not hard to see why view frameworks are popular; however, this should do
the trick for putting together a full-stack application.

8. Now let's compile and run our web application. In one Command Prompt
window, enter the following:

npx tsc -w.

This will transpile the TypeScript code in watch mode so that it restarts when
changes are made.

9. Start the HTTP server in another window with npx http-server . -c-1 as
we did in Exercise 12.03, Promise.allSettled.

 Now navigate a web browser to http://localhost:8080/. You should see
a form like the one that follows:

Figure 12.10: Initial load

Note

If you don't see "Promise Delete" then it could be that your API from
Exercise 6, Implementing a RESTful API backed by sqlite isn't running.
Return to that exercise and follow the steps there.

676 | Appendix

You can add and delete promises. Here are some examples:

10. Add the promise Always lint my code and save it. You should see
the following:

Figure 12.11: One promise made

11. Add the promise Never block the event loop and save it:

Figure 12.12: Text entered

You should see the following promise saved:

Figure 12.13: Text saved

Chapter 12: Guide to Promises in TypeScript | 677

Figure 12.14 and Figure 12.15 show some more examples:

Figure 12.14: Another promise saved

Figure 12.15: Another promise saved

Try to add to the application and make use of the API to get a single promise or
update promises.

678 | Appendix

Chapter 13: Async/Await in TypeScript

Activity 13.01: Refactoring Chained Promises to Use await

Solution:

Let's go over what needed to change in order to make this work:

1. First of all, the await keyword can only be used inside an async function, so
we must add that keyword to the function declaration:

const renderAll = async () => {

2. Now we have to replace then with await. Let's look again at what the render
function does. In our simple case, it just returns a promise that resolves to a
string, but in the real world, it would render something in a web browser and
then resolve to a string. Since we want to log out that string, we can actually
resolve the promise inside a console.log statement. Even though console.
log is a synchronous operation, putting await inside it will cause the function
to print out the resolved promise value, exactly as we would hope.

The refactored program is six lines shorter and eliminates nesting:

export class El {

 constructor(private name: string) {}

 render = () => {

 return new Promise((resolve) =>

 setTimeout(

 () => resolve(`${this.name} is resolved`),

 Math.random() * 1000

)

);

 };

}

const e1 = new El('header');

const e2 = new El('body');

const e3 = new El('footer');

Chapter 13: Async/Await in TypeScript | 679

const renderAll = async () => {

 console.log(await e1.render());

 console.log(await e2.render());

 console.log(await e3.render());

};

renderAll();

3. Run the file using npx ts-node refactor.ts. You should get the
following output:

header is resolved

body is resolved

footer is resolved

680 | Appendix

Chapter 14: TypeScript and React

Activity 14.01: The Blog

Solution:

1. Create a new React application as outlined earlier in this chapter.

2. Prepare a Firestore database with authentication on Firebase as outlined in
Exercise 14.04, Getting Started with Firebase.

3. Install the Firebase client with npm i firebase. Firebase includes typings so
we won't need to install those separately.

4. Create a directory called services under src and a file called firebase.ts
there. The Firebase integration can be pretty basic:

import firebase from 'firebase';

const config = {
 apiKey: 'abc123',
 authDomain: 'blog-xxx.firebaseapp.com',
 projectId: 'https://blog-xxx.firebaseio.com',
 storageBucket: 'blog-xxx.appspot.com',
 messagingSenderId: '999',
 appId: '1:123:web:123abc',
};

firebase.initializeApp(config);
export const auth = firebase.auth();
export const db = firebase.firestore();

5. Make sure to use the values from the Firebase dashboard. This will
expose Firebase's authentication and database capabilities to the rest of
your application.

6. Set up two providers under src/providers called StoriesProvider.ts
and UserProvider.ts. Now, UserProvider.ts will be simpler, so let's do
that one first. Like Exercise 14.03, React Context, we'll employ createContext
and useState, but we'll also need useEffect:

import firebase from 'firebase';

import React, { createContext, ReactNode, useEffect, useState } from
'react';

import { auth } from '../services/firebase';

interface ContextProps {

Chapter 14: TypeScript and React | 681

 children: ReactNode;

}

export const UserContext = createContext<Partial<firebase.User |
undefined>>(
 {}

);

export const UserProvider = (props: ContextProps) => {

 const [user, setUser] = useState<firebase.User>();

 useEffect(() => {

 auth.onAuthStateChanged((userAuth) => {

 setUser(userAuth ?? undefined);

 });

 });

 return (

 <UserContext.Provider value={user}>{props.children}</UserContext.
Provider>
);

};

7. StoriesProvider.ts is responsible for persisting stories (the blog links)
and comments on the stories. To make this work, start by creating interfaces for
comments and stories. Comments should belong to stories. Here's a sample of
how that could be done:

export interface CommentModel {
 comment: string;
 timestamp: number;
 user: string;
}

export interface StoryModel {
 comments: CommentModel[];
 id: string;
 link: string;
 title: string;
 user: string;
}

682 | Appendix

With those interfaces created, we need to implement some methods in our
provider, namely methods for adding comments and stories as well as a method
that will fetch all the stories. To do that, we'll need to access a collection in our
database. This can be done with a single line of code:

const storiesDB = db.collection('stories');

This code will create the collection if it doesn't exist. The storiesDB object
we created has methods for fetching, adding, and updating documents from
the collection. With those methods implemented, we add our stories data
and the methods that handle the data to our provider value. This means that
components that use StoriesContext will be able to call those methods or
access that data.

Again, the solution to this somewhat complicated provider is available
on GitHub.

8. Raw document data is a bit difficult to work with, but Firebase has the concept
of a converter that we can create, which will tell it how to map document fields
to our TypeScript objects. Create and export a converter implementing the
fromFirestore and toFirestore methods. Using those should eliminate
some type errors and avoid us needing to use any.

9. Install React Router (react-dom and react-router-dom). Set the default
route to a home page. Then, create Add, Signin, and Signup pages. Put
the pages under src/pages. Just put some text on them in a basic function
component to verify routing is working as expected.

10. Build out the Signup page first as it's hard to sign in without having signed up.
Now we'll use Material-UI. Install @material-ui/core and @material-ui/
icons and we can start building components.

11. Our Signup page can be created using Container, TextField, and
Button, which are all available components in Material-UI. How your page
ultimately looks is up to you, but you will need two TextField components.
One of those should have both a type and name of "email" and the other
should have "password" for both of those props.

We'll track the state of both the email and password fields using useState and
an onChange event.

When the button is clicked, we should call a method on the auth object we
exported from our Firebase service earlier to create a new user using the given
email address and password.

Chapter 14: TypeScript and React | 683

12. Upon successfully signing in, let's send the user back to the home page with the
useHistory React Hook.

13. The Signin page will be a lot like the Signup page. It also needs to capture
the user's email address and password and have a button to submit the form.
This time we should call a method on auth to sign the user in via an email
and password.

14. Our Add page creates new posts to the blog. We'll capture the title of the post
and a link. Add additional fields if you like. This will work similarly to the prior
two pages, but now we will use StoriesContext instead of UserContext to
expose the method to add stories.

15. For the home page, we can just load up all the stories and display them as a
Material-UI List. It's possible to just output the story object and wrap it in
HTML tags to make it look presentable, but a better solution is to create a Story
component that can better encapsulate the object. Add a Story component to
src/components and use that for your story display.

16. To manage comments, each story should have its own comments. It's a good
idea to create this as a separate component that each story will contain. The
Comments component can contain a list of each individual comments (another
component!) as well as controls for grabbing that method to add comments
from StoriesContext.

17. At this point, everything is working quite well, but we should add some
navigation elements so users don't have to key in the different routes. We can
use the AppBar, Toolbar, Menu, MenuItem, and Button components from
Material-UI to create some attractive navigation options. Navigation itself can be
performed via the useHistory React Hook.

Ben Grynhaus

Jordan Hudgens

Rayon Hunte

Hey!

We're Ben Grynhaus, Jordan Hudgens, Rayon Hunte,
Matt Morgan, and Wekoslav Stefanovski, the authors of
this book. We really hope you enjoyed reading our book
and found it useful for learning TypeScript.

It would really help us (and other potential readers!)
if you could leave a review on Amazon sharing your
thoughts on The TypeScript Workshop.

Go to the link https://packt.link/r/1838828494.

OR

Scan the QR code to leave your review.

Your review will help us to understand what's worked
well in this book and what could be improved upon for
future editions, so it really is appreciated.

Best wishes,

Ben Grynhaus, Jordan Hudgens, Rayon Hunte,
Matt Morgan, and Wekoslav Stefanovski

Matt Morgan

Wekoslav Stefanovski

https://packt.link/r/1838828494

Index

A
accessor: 265, 267,

280-281, 285-288,
291, 294, 310

adapter: 314
algorithm: 23, 33
aliases: 51, 156, 191,

221, 224-229,
231, 234, 255

asyncfn: 525-528
async-nest: 535

B
bigint: 29

C
callback: 104-105,

110-111, 350,
359, 388, 394,
396, 415-417

closure: 104, 114,
120, 122-123

complier: 260
constrain: 359, 363
construct: 28, 50,

153, 184, 190, 192,
252-253, 268, 279,
368, 390-392, 403,
406, 410, 461, 550

controller: 330-331,
536-539, 541,
543-544

css-in-js: 581

D
debugging: 4, 79,

201, 379, 436

E
ecmascript: 3, 8,

138, 356, 465,
474, 506, 510-512,
514-516, 523

eslint: 535-536
esnext: 8, 465,

516, 529

F
fibbonacci: 117-121
frontend: 194, 197,

229, 242, 255, 321,
326, 331, 369

G
getarea: 135-137,

142-143
getdata: 510-511
getformat: 530
getfriends: 433,

435-436, 438,
440-441

gethello: 330, 536-538
gethours: 420, 422
getlength: 359
getmorefib: 121
getnext: 118-121
getone: 491, 493, 499
getpledge: 543
getpromise: 471

H
handler: 245-246,

383, 391-392,
403-404, 411, 426,
430, 434, 436

I
inversify: 333-335

M
memoizing: 362

N
namespace: 3
ngmodule: 321, 324,

328, 330, 333
npm-cache: 528

O
overload: 207, 248-249
override: 10, 201-202,

204-205, 208-209,
212-213, 220

P
plugins: 3, 550

R
react-dom: 551, 556
recursive: 103, 116,

453, 459-460

S
setter: 204, 281-283,

285, 288-291

T
todate: 360
tofixed: 346
tokens: 270
transpile: 7-11, 473,

475-476, 478,
500, 505, 513

tsconfig: 8-10, 58,
258-260, 294,
332, 465, 475,
514-515, 529, 555

ts-jest: 146-147, 153
ts-node: 89, 101,

189, 192, 195, 197,
200, 229, 231, 270,
272, 425, 482-483,
485, 489, 500, 513,
518-522, 525-528,
530, 534, 544

typeerror: 346, 530
typeof: 28-31, 47,

242-243, 332, 365
typeorm: 538-544
type-safe: 153,

343, 354, 360,
362-364, 369

V
validator: 191
validators: 498

W
websockets: 535

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: TypeScript Fundamentals
	Introduction
	The Evolution of TypeScript
	Design Goals of TypeScript

	Getting Started with TypeScript
	The TypeScript Compiler
	Setting Up a TypeScript Project
	Exercise 1.01: Using tsconfig.json and Getting Started with TypeScript
	Types and Their Uses

	TypeScript and Functions
	Exercise 1.02: Working with Functions in TypeScript

	TypeScript and Objects
	Exercise 1.03: Working with Objects

	Basic Types
	Exercise 1.04: Examining typeof
	Strings
	Numbers
	Booleans
	Arrays
	Tuples
	Schwartzian transform

	Exercise 1.05: Using Arrays and Tuples to Create an Efficient Sort of Objects
	Enums
	Any and Unknown
	Null and Undefined
	Never
	Function Types

	Making Your Own Types
	Exercise 1.06: Making a Calculator Function
	Activity 1.01: Creating a Library for Working with Strings

	Summary

	Chapter 2: Declaration Files
	Introduction
	Declaration Files
	Exercise 2.01: Creating a Declaration File from Scratch
	Exceptions

	Third-Party Code Libraries
	DefinitelyTyped
	Analyzing an External Declaration File
	Exercise 2.02: Creating Types with External Libraries
	Development Workflow with DefinitelyTyped
	Exercise 2.03: Creating a Baseball Lineup Card Application
	Activity 2.01: Building a Heat Map Declaration File

	Summary

	Chapter 3: Functions
	Introduction
	Functions in TypeScript
	Exercise 3.01: Getting Started with Functions in TypeScript
	The function Keyword
	Function Parameters
	Argument versus Parameter
	Optional Parameters
	Default Parameters
	Multiple Arguments
	Rest Parameters
	Destructuring Return Types
	The Function Constructor
	Exercise 3.02: Comparing Number Arrays

	Function Expressions
	Arrow Functions
	Type Inference
	Exercise 3.03: Writing Arrow Functions
	Understanding this
	Exercise 3.04: Using this in an Object
	Closures and Scope
	Exercise 3.05: Creating the Order Factory with Closures
	Currying
	Exercise 3.06: Refactoring into Curried Functions

	Functional Programming
	Organizing Functions into Objects and Classes
	Exercise 3.07: Refactoring JavaScript into TypeScript

	Import, Export, and Require
	Exercise 3.08: import and export
	Activity 3.01: Building a Flight Booking System with Functions

	Unit Testing with ts-jest
	Activity 3.02: Writing Unit Tests

	Error Handling
	Summary

	Chapter 4: Classes and Objects
	Introduction
	What Are Classes and Objects?
	Exercise 4.01: Building Your First Class
	Extending Class Behavior with a Constructor
	The this Keyword
	Exercise 4.02: Defining and Accessing the Attributes of a Class
	Exercise 4.03: Integrating Types into Classes

	TypeScript Interfaces
	Exercise 4.04: Building an Interface

	Generating HTML Code in Methods
	Exercise 4.05: Generating and Viewing HTML Code
	Working with Multiple Classes and Objects
	Exercise 4.06: Combining Classes
	Activity 4.01: Creating a User Model Using Classes, Objects, and Interfaces

	Summary

	Chapter 5: Interfaces and Inheritance
	Introduction
	Interfaces
	Case Study – Writing Your First Interface
	Exercise 5.01: Implementing Interfaces
	Exercise 5.02: Implementing Interfaces – Creating a Prototype Blogging Application
	Exercise 5.03: Creating Interfaces for a Function for Updating a User Database
	Activity 5.01: Building a User Management Component Using Interfaces

	TypeScript Inheritance
	Exercise 5.04: Creating a Base Class and Two Extended Child Classes
	Exercise 5.05: Creating Bases and Extended Classes Using Multi-level Inheritance
	Activity 5.02: Creating a Prototype Web Application for a Vehicle Showroom Using Inheritance

	Summary

	Chapter 6: Advanced Types
	Introduction
	Type Aliases
	Exercise 6.01: Implementing a Type Alias

	Type Literals
	Exercise 6.02: Type Literals

	Intersection Types
	Exercise 6.03: Creating Intersection Types

	Union Types
	Exercise 6.04: Updating the Products Inventory using an API

	Index Types
	Exercise 6.05: Displaying Error Messages
	Activity 6.01: Intersection Type
	Activity 6.02: Union Type
	Activity 6.03: Index Type

	Summary

	Chapter 7: Decorators
	Introduction
	Reflection
	Setting Up Compiler Options

	Importance of Decorators
	The Problem of Cross-Cutting Concerns
	The Solution

	Decorators and Decorator Factories
	Decorator Syntax
	Decorator Factories

	Class Decorators
	Property Injection
	Exercise 7.01: Creating a Simple Class Decorator Factory
	Constructor Extension
	Exercise 7.02: Using a Constructor Extension Decorator
	Constructor Wrapping
	Exercise 7.03: Creating a Logging Decorator for a Class

	Method and Accessor Decorators
	Decorators on Instance Functions
	Exercise 7.04: Creating a Decorator That Marks a Function Enumerable
	Decorators on Static Functions
	Method Wrapping Decorators
	Exercise 7.05: Creating a Logging Decorator for a Method

	Activity 7.01: Creating Decorators for Call Counting
	Using Metadata in Decorators
	Reflect Object
	Exercise 7.06: Adding Metadata to Methods via Decorators

	Property Decorators
	Exercise 7.07: Creating and Using a Property Decorator

	Parameter Decorators
	Exercise 7.08: Creating and Using a Parameter Decorator

	Application of Multiple Decorators on a Single Target
	Activity 7.02: Using Decorators to Apply Cross-Cutting Concerns

	Summary

	Chapter 8: Dependency Injection in TypeScript
	Introduction
	The DI Design Pattern
	DI in Angular
	Exercise 8.01: Adding HttpInterceptor to an Angular App
	DI in Nest.js

	InversifyJS
	Exercise 8.02: "Hello World" Using InversifyJS
	Activity 8.01: DI-Based Calculator

	Summary

	Chapter 9: Generics and Conditional Types
	Introduction
	Generics
	Generic Interfaces
	Generic Types
	Generic Classes

	Exercise 9.01: Generic Set class
	Generic Functions
	Generic Constraints
	Exercise 9.02: The Generic memoize Function
	Generic Defaults

	Conditional Types
	Activity 9.01: Creating a DeepPartial<T> Type

	Summary

	Chapter 10: Event Loop and Asynchronous Behavior
	Introduction
	The Multi-Threaded Approach
	The Asynchronous Execution Approach

	Executing JavaScript
	Exercise 10.01: Stacking Functions

	Browsers and JavaScript
	Events in the Browser

	Environment APIs
	setTimeout
	Exercise 10.02: Exploring setTimeout
	AJAX (Asynchronous JavaScript and XML)
	Activity 10.01: Movie Browser Using XHR and Callbacks

	Promises
	Exercise 10.03: Counting to Five
	What are Promises?
	Exercise 10.04: Counting to Five with Promises
	Activity 10.02: Movie Browser Using fetch and Promises
	async/await
	Exercise 10.05: Counting to Five with async and await
	Activity 10.03: Movie Browser Using fetch and async/await

	Summary

	Chapter 11: Higher-Order Functions and Callbacks
	Introduction
	Introduction to HOCs – Examples

	Higher-Order Functions
	Exercise 11.01: Orchestrating Data Filtering and Manipulation Using Higher-Order Functions

	Callbacks
	The Event Loop
	Callbacks in Node.js
	Callback Hell
	Avoiding Callback Hell
	Splitting the Callback Handlers into Function Declarations at the File Level
	Chaining Callbacks
	Promises
	async/await
	Activity 11.01: Higher-Order Pipe Function

	Summary

	Chapter 12: Guide to Promises in TypeScript
	Introduction
	The Evolution of and Motivation for Promises
	Anatomy of a Promise
	The Promise Callback
	then and catch
	Pending State
	Fulfilled State
	Rejected State
	Chaining
	Exercise 12.01: Chaining Promises
	finally
	Promise.all
	Exercise 12.02: Recursive Promise.all
	Promise.allSettled
	Exercise 12.03: Promise.allSettled
	Promise.any
	Promise.race

	Enhancing Promises with Types
	Exercise 12.04: Asynchronous Rendering

	Libraries and Native Promises — Third-Party Libraries, Q, and Bluebird
	Polyfilling Promises

	Promisify
	Node.js util.promisify

	Asynchronous FileSystem
	fs.readFile
	fs.readFileSync
	The fs Promises API
	Exercise 12.05: The fs Promises API

	Working with Databases
	Developing with REST
	Exercise 12.06: Implementing a RESTful API backed by sqlite

	Putting It All Together – Building a Promise App
	Activity 12.01: Building a Promise App

	Summary

	Chapter 13: Async/Await in TypeScript
	Introduction
	Evolution and Motivation
	async/await in TypeScript
	Exercise 13.01: Transpilation Targets
	Choosing a Target

	Syntax
	async
	Exercise 13.02: The async Keyword
	Exercise 13.03: Resolving an async Function with then
	await
	Exercise 13.04: The await Keyword
	Exercise 13.05: Awaiting a Promise
	Syntactic Sugar

	Exception Handling
	Exercise 13.06: Exception Handling

	Top-Level await
	Promise Methods
	Exercise 13.07: async/await in Express.js
	Exercise 13.08: NestJS
	Exercise 13.09: TypeORM
	Activity 13.01: Refactoring Chained Promises to Use await

	Summary

	Chapter 14: TypeScript and React
	Introduction
	Typing React
	TypeScript in React

	Hello, React
	The Component
	Stateful Components
	Stateless Components
	Pure Components
	Higher-Order Components

	JSX and TSX
	Exercise 14.01: Bootstrapping with Create React App

	Routing
	Exercise 14.02: React Router

	React Components
	Class Components
	Function Components (Function Declaration)
	Function Components (Function Expression with Arrow Functions)
	No JSX
	State in Function Components

	State Management in React
	Exercise 14.03: React Context

	Firebase
	Exercise 14.04: Getting Started with Firebase

	Styling React Applications
	Master Stylesheet
	Component-Scoped Styles
	CSS-in-JS
	Component Libraries
	Activity 14.01: The Blog

	Summary

	Appendix
	Index

